
Technische Universität München

Department of Mathematics

Bachelor’s Thesis

Monads and their Applications in Haskell
Marvin Jahn

Supervisor/Advisor: Prof. Dr. Claudia Scheimbauer

Submission Date: 15.10.2020

I assure the single handed composition of this bachelor’s thesis only supported by declared
resources.

Munich, 14.10.2020 Marvin Jahn

Zusammenfassung

Diese Arbeit beschäftigt sich mit Monaden und ihren Anwendungen in der Program-
miersprache Haskell. Zu Beginn geben wir zwei äquivalente Definitionen für Monaden:
Zum einen die konventionelle, zum anderen eine abstraktere Definition als “Monoide in
der Kategorie der Endofunktoren”. Danach betrachten wir die wohlbekannte Konstruk-
tion, die es erlaubt, Monaden aus Adjunktionen zu erhalten und nutzen diese, um einige
Beispiele zu konstruieren. So betrachten wir viele Monaden, die von Adjunktionen zwis-
chen freien Funktoren und Vergissfunktoren induziert werden. Eine weitere Klasse von
Beispielen erhalten wir durch das Konzept der Aktionsmonade. Wir zeigen außerdem, dass
jede Monade von einer Adjunktion abgeleitet werden kann und stellen zwei verschiedene
Konstruktionen mit dieser Eigenschaft vor, nämlich die Eilenberg-Moore und die Kleisli
Kategorie.
Nachdem wir eine Einführung in die Programmiersprache Haskell gegeben haben, konstru-
ieren wir die kartesisch abgeschlossene Kategorie Hask , welche uns erlaubt, einen Großteil
von Haskell mittels Kategorientheorie zu beschreiben. Außerdem führen wir die Monad

Typklasse ein und machen deutlich, wie diese die Definition einer Monade widerspiegelt.
In diesem Zusammenhang definieren wir auch extension systems (ein deutscher Begriff
existiert nicht) und zeigen, dass dieses Konzept äquivalent zur Definition einer Monaden
ist. Um einen Einblick in den praktischen Einsatz von Monaden in Haskell zu erhalten,
betrachten wir ein paar Beispiele. Schließlich definieren wir starke und angereicherte Mon-
aden und sehen, dass alle Monaden in Haskell, die durch die Monad Typklasse dargestellt
werden, stark sind.

Contents

1 Introduction 1

2 Monads as Monoids in the Category of Endofunctors 2
2.1 Monoidal Categories . 2
2.2 Monoids in Monoidal Categories . 4
2.3 Definition of Monads and First Examples 6

3 Constructions with Monads 9
3.1 Monads from Adjunctions . 9
3.2 The Action Monad . 14
3.3 The Eilenberg-Moore Category . 15
3.4 The Kleisli Category . 21

4 Category Theory in Haskell 24
4.1 Haskell as a Functional Programming Language 24
4.2 A Brief Introduction to Haskell . 25
4.3 The Category Hask . 29
4.4 The Functor Type Class . 31

5 Monads in Haskell 32
5.1 The Monad Type Class . 32
5.2 The List Monad . 36
5.3 The Maybe Monad . 37
5.4 The Writer Monad . 38
5.5 Strong and Enriched Monads . 38

1

1 Introduction

Category theory is one of the most abstract branches of mathematics, which is why it has
sometimes jokingly been described as “abstract nonsense”. Due to the abstraction, many
concepts in category theory are difficult to understand and one could complain that it is
hard to find applications for this abstract framework. However, this text serves as proof
that the reputation of category theory as a field with little use in the “real world” is not
justified. Namely, we explain how monads are used in programming, more precisely, in
the programming language Haskell.

It is surprising, that something as abstract as monads can be used in something “down
to earth” like programming. After all, monads were invented in the late 1950s in a purely
mathematical setting. The applications of monads in functional programming languages
were only discovered roughly 30 years later.

As mentioned, this text focuses on the programming language Haskell, in order to demon-
strate the uses of monads in programming. The main reason for the choice of this pro-
gramming language is that Haskell is generally regarded as the programming language
most reliant on monads. Indeed, monads are not “some” construct in the Haskell pro-
gramming language; instead they form a fundamental part of the language and serve as a
means to conveniently perform certain computations. Their relevance is also underlined
by the fact that Haskell provides a dedicated syntax, called do-notation, in order to make
programming with monads more comfortable.

The main goal of this text is to offer an introduction to monads, the Haskell programming
language and most importantly, their interplay.

This is done from a very rigorous perspective and special care is taken to explain the
underlying mathematical structure that makes the objects work the way they are expected
to. Since monads constitute a formidable obstacle to the aspiring Haskell programmer,
countless tutorials on their uses in Haskell can be found. However, the vast majority
of those texts is aimed at programmers and consequently, the mathematical structures
behind monads are usually suppressed.

This text takes the opposite approach: A clear focus is placed on the mathematical back-
ground and less emphasis is placed on Haskell code. The text is aimed at mathematicians
and the reader should be familiar with basic notions from category theory. However,
knowledge about programming is not required, as a short introduction to the Haskell
programming language is given.

In the first section, we highlight two definitions of monads; the conventional one and a
more abstract definition as “monoids in the category of endofunctors”.

The second section describes the well-known connection between monads and adjunc-
tions. This allows us to construct monads from familiar adjunctions, resulting in many
interesting monads. We also define the famous Eilenberg-Moore and Kleisli categories,
both of which offer an answer to the question: “How can we construct an adjunction that
induces a given monad?”. Additionally, we obtain another class of monads; namely the
Action monad.

The next section starts with a brief introduction to Haskell. In order to use category theory
to reason about Haskell, we define a suitable category. This is the category Hask and
special care is taken to explain the potential problems arising from similar constructions.
We finish the section by looking at the Functor type class in Haskell.

2 2 MONADS AS MONOIDS IN THE CATEGORY OF ENDOFUNCTORS

The final section puts the established connections between category theory and Haskell
to use. First, extension systems are defined and it is shown that they are just different
description of the concept of a monad. Then we explain the Monad type class and give some
concrete examples of monads in Haskell, rediscovering some previously defined monads in
the process. We conclude by looking at strong and enriched monads. There we see that
all monads represented by the Monad type class are strong.
I hope this text will convince the reader that the connection between a very abstract con-
cept like monads, and an applied craft such as programming is both useful and beautiful.
On a personal note, Haskell was my original motivation to get acquainted with category
theory, so the application of categorical thinking in Haskell has a special place in my
heart.

2 Monads as Monoids in the Category of Endofunc-

tors

In this section, we define many important notions that will be needed throughout this
text. In particular, we give two definitions of monads.

2.1 Monoidal Categories

While the classical definition of a monad in terms of endofunctors and natural transfor-
mations is not too hard, there is an alternative definition, which requires more theoretic
setup, but in turn yields monads as a special case. This alternative definition is stated in
[Mac98, p.138], where it is noted that

“A monad in X is just a monoid in the category of endofunctors of X, with
product× replaced by composition of endofunctors and unit set by the identity
endofunctor.”

To understand this definition, we first need to define monoidal categories.

Definition 2.1. A monoidal category (C,⊗, 1, α, λ, ρ) consists of

• a category C,

• a bifunctor ⊗ : C × C → C (called monoidal product),

• an object 1 ∈ C (called unit object),

• three natural isomorphisms, for A,B,C ∈ C arbitrary

λ(A) : 1⊗ A
∼=−→ A, (called left unitor)

ρ(A) : A⊗ 1
∼=−→ A, (called right unitor)

α(A,B,C) : (A⊗B)⊗ C
∼=−→ A⊗ (B ⊗ C) (called associator),

such that the following two diagrams commute for all A,B,C,D ∈ C:

2.1 Monoidal Categories 3

((A⊗B)⊗ C)⊗D (A⊗B)⊗ (C ⊗D) A⊗ (B ⊗ (C ⊗D))

(A⊗ (B ⊗ C))⊗D A⊗ ((B ⊗ C)⊗D),

α

α⊗idD

α

α

idA⊗α

(A⊗ 1)⊗B A⊗ (1⊗B)

A⊗B.

α(A,1,B)

ρ(A)⊗idB idA⊗λ(B)

In the first diagram, α denotes the appropriate associator, for example α(A⊗B,C,D).
A strict monoidal category is a monoidal category, such that λ, ρ and α are identities.

The diagrams are inspired by the associativity and identity laws of a monoid. To gain
some intuition, we briefly examine how one can obtain monoidal categories from (or-
dinary) monoids. Indeed, a monoid M directly induces a strict monoidal category by
considering the discrete category consisting of the elements of the monoid as objects. In
that case, the monoidal product is given by the multiplication of the monoid and the unit
object is the identity element of the monoid [BJK05, Exa. 1.2].
Moreover, if the monoidM is commutative, it permits another interpretation as a monoidal
category, which is obtained by viewing M as a category with a single object ∗. Then the
monoidal product ⊗ : M × M → M is given by the multiplication · of the monoid.
The commutativity of M is necessary and sufficient for ⊗ to be a functor: Clearly
id∗ ⊗ id∗ = id∗, but we also need that for f, f ′, g, g′ ∈ End(M),

(f ′ ⊗ g′) ◦ (f ⊗ g) = (f ′ · g′) · (f · g) = f ′ · g′ · f · g

equals
(f ′ ◦ f)⊗ (g′ ◦ g) = (f ′ · f) · (g′ · g) = f ′ · f · g′ · g.

By multiplying with f ′−1 from the left and g−1 from the right, we see that this is equiva-
lent to the commutativity of M .

We give some examples of monoidal categories.

Example 2.2. 1. Any category with finite products is monoidal by defining the monoidal
product to be that product and 1 to be a terminal object. Such a category is called
cartesian monoidal category [EK66, p.551].
Dually, a category with finite coproducts is monoidal, where the monoidal product
is the coproduct and 1 is an initial object. Since products and coproducts are only
unique up to isomorphism, it is necessary to explicitly choose one of the candidates
for every pair of objects [Mac63, p.30].

2. The usual tensor products from algebra give rise to monoidal categories. For ex-
ample, fix a field K and consider the category VectK , consisting of the K-vector
spaces as objects and the K-linear maps as morphisms. This category is monoidal;
its monoidal product is the tensor product and the unit object is K [Mac63, p.31].

4 2 MONADS AS MONOIDS IN THE CATEGORY OF ENDOFUNCTORS

3. As a generalization of the previous example, consider the category Mod R of R-
modules with R-linear maps, where R is a commutative ring (with unit). Just as in
the previous example, this category is monoidal with the tensor product. The same
holds for the category of abelian groups Ab, because it is isomorphic (as a category)
to the category of Z-modules Mod Z: Any abelian group A can be endowed with the
structure of a Z-module by defining z · a to be the z-times sum of x, where x = a
for z ≥ 0 and x = −a otherwise; i.e. we define z · a inductively by setting 0 · a := 0
and (z ± 1) · a := z · a± a.
Moreover, this is the only possible way that A can be given a Z-module structure,
since the scalar multiplication is uniquely determined by the action of 1, and mul-
tiplying by 1 has to yield the identity function on A by the module axioms.
Since additionally any homomorphism f : A → B between abelian groups is au-
tomatically Z-linear, this defines a functor Ab → Mod Z, which is inverse to the
forgetful functor U : Mod Z → Ab, so Ab is isomorphic to Mod Z.

2.2 Monoids in Monoidal Categories

As a next step, we can define a monoid in the categorical sense, which, as the name
suggests, is inspired by the notion of a usual monoid.

Definition 2.3. A monoid (C, µ, η) in a monoidal category (C,⊗, 1, α, λ, ρ) is an object
C ∈ C together with two morphisms µ : C⊗C → C (called multiplication) and η : 1 → C
(called unit), such that the following two diagrams commute:

C ⊗ (C ⊗ C) (C ⊗ C)⊗ C C ⊗ C

C ⊗ C C,

idC⊗µ

α(C,C,C) µ⊗idC

µ

µ

1⊗ C C ⊗ C C ⊗ 1

C.

η⊗idC

λ
µ

idC⊗η

ρ

The first diagram ensures “associativity” of µ, while the second one establishes η as a
two-sided “neutral element”.

This abstract concept manifests itself in many special cases, some of which will be high-
lighted in the following.

Example 2.4. 1. Since the category Set , consisting of the sets as objects and the usual
maps as morphisms, admits finite products, it is monoidal by 2.2.1. In that case, a
monoid (as in 2.3) precisely amounts to an ordinary monoid: µ corresponds to the
multiplication and the unique element in the image of η corresponds to the neutral
element of the monoid [Bra14, Exa. 4.1.3].

2.2 Monoids in Monoidal Categories 5

2. An especially interesting example arises when considering VectK as a monoidal cate-
gory with the tensor product. Then the monoids are precisely the (unital) associative
K-algebras: Given a monoid (V, µ, η), there is the K-linear map µ : V ⊗ V → V ,
which can be composed with the canonical map V ×V → V ⊗V , yielding a bilinear
map ϕ : V × V → V, (a, b) 7→ µ(a⊗ b). For a, b, c ∈ V , if we denote ϕ(a, b) by a · b,
then the first diagram shows that

(a · b) · c = µ(µ(a⊗ b)⊗ c)

= (µ ◦ (µ⊗ idV))((a⊗ b)⊗ c)

= (µ ◦ (idV ⊗ µ) ◦ α(V, V, V))((a⊗ b)⊗ c)

= (µ ◦ (idV ⊗ µ))(a⊗ (b⊗ c))

= a · (b · c),

so · is associative. Moreover, the unit is given by η(1) ∈ V (here 1 denotes the unit
element 1 ∈ K and not the unit object in C). This follows from the second diagram,
since

η(1) · a = µ(η(1)⊗ a) = (µ ◦ (η ⊗ idV))(1⊗ a) = λ(1⊗ a) = a

by the commuting left triangle and analogously and a · η(1) = a by the right one.
Together with the bilinearity of · and η : K → V , this shows that · gives V a
K-algebra structure, with unit η(1).
On the other hand, let A be a K-algebra with underlying vector space V . We denote
the canonical map K → V by η. By the universal property of the tensor product,
the multiplication · : V ×V → V of A gives rise to a K-vector space homomorphism
µ : V ⊗ V → V with µ(a ⊗ b) = a · b for all a, b ∈ V . With this choice of µ and
η, the two diagrams commute by a similar calculation as above, so V is indeed a
monoid in VectK .

3. More generally, let R be a commutative ring. Then the monoids in the monoidal
category of R-modules Mod R, equipped with the tensor product, are the associative
R-algebras [BJT97, Exa. 1.2]. By 2.2.3, the monoids in Ab are the associative
Z-algebras. However, since Z is initial in the category of commutative rings CRing
with the ring homomorphisms as morphisms, an associative Z-algebras is just a
ring. Therefore, the monoids in Ab are precisely the rings.

4. The category Cat , consisting of the small categories as objects and functors as mor-
phisms, is monoidal with its product ×; the unit object 1 is the category consisting
of a single object ∗ with a single morphism. The monoids in Cat are precisely the
strict monoidal small categories [Awo10, p.79].
To show this, let (C, µ, η) be a monoid. We denote the bifunctor µ : C × C → C by
⊗′ and set 1′ := η(∗). Then it is not hard to see that (C,⊗′, 1′) is a strict monoidal
category. For instance, by the first diagram in the definition of a monoid, it holds

6 2 MONADS AS MONOIDS IN THE CATEGORY OF ENDOFUNCTORS

for A,B,C ∈ C:

(A⊗′ B)⊗′ C = µ(µ(A,B), C)

= (µ ◦ (µ× idC))((A,B), C)

= (µ ◦ (idC × µ) ◦ α(C, C, C))((A,B), C)

= (µ ◦ (idC × µ))(A, (B,C))

= (A⊗′ B)⊗′ C.

Similar calculations show that every strict monoidal small category is a monoid in
Cat .

We establish the following notation, as in [Bra17, 3.5.10].
Let F,G : C → D be two functors and let α : F ⇒ G be a natural transformation. Given
a functor H : D → E , we write

H • α : H ◦ F ⇒ H ◦G,

for the natural transformation with components (H • α)(A) := H(α(A));
in diagrams:

C D E

F

G

α H ⇝ C E .

H◦F

H◦G

H•α

Analogously, given a functor K : E → C, the natural transformation

α •K : F ◦K → G ◦K,

has components (α •K)(A) := α(K(A)) and can be visualized by

E C DK

F

G

α ⇝ E D.

F◦K

G◦K

α•K

2.3 Definition of Monads and First Examples

The special case we are interested in arises when fixing a category C and considering the
category of endofunctors CC of C. To make this category monoidal, we need a bifunctor
CC × CC → CC, which we obtain from the following lemma.

Lemma 2.5 ([Bra17, 3.5.13]). For categories C,D, E , there exists a functor

◦ : ED ×DC → EC,

which acts on objects as functor composition and on natural transformations as horizontal
composition; i.e. a pair of natural transformations (β : F ′ ⇒ G′, α : F ⇒ G) gets mapped
to β • α : (β • G) ◦ (F ′ • α) : F ′ ◦ F ⇒ G′ ◦ G with components β(G(A)) ◦ F ′(α(A)) for
A ∈ C. In pictures:

2.3 Definition of Monads and First Examples 7

C D E

F

G

α

F ′

G′

β ⇝ C E .

F ′◦F

G′◦G

β•α

Proof. A pair of identity natural transformations (idF ′ : F ′ ⇒ F ′, idF : F ⇒ F) is mapped
to the natural transformation F ′ ◦ F ⇒ F ′ ◦ F with components

idF ′(F (A)) ◦ F ′(idF (A)) = idF ′(F (A)) ◦ F ′(idF (A)) = id(F ′◦F)(A) ◦ id(F ′◦F)(A) = id(F ′◦F)(A),

revealing that this is indeed the identity natural transformation idF ′◦F .
It is left to show that ◦ is compatible with composition. To prove this, let F,G,H :

C → D, F ′, G′, H ′ : D → E be functors and F G Hα β
, F ′ G′ H ′α′ β′

natural
transformations; i.e.

C D E .

F

G

H

α

β

F ′

G′

H′

α′

β′

The middle triangle of the diagram

F ′ ◦ F F ′ ◦G G′ ◦G G′ ◦H H ′ ◦H

F ′ ◦H

F ′•α

F ′•(β◦α)

α′•G

F ′•β

G′•β β′•H

α′•H
(β′◦α′)•H

commutes by naturality of α′, the left one since F ′ is a functor and the right one by
definition. Therefore, the whole diagram commutes and ◦ is indeed a functor.

By applying the lemma to C = D = E , we derive a bifunctor ◦ : CC × CC → CC, which
turns CC into a strict monoidal category with the identity functor idC as the unit object.
We can now draw the connection to monads.

Definition 2.6. Amonad is a monoid in the monoidal category of endofunctors (CC, ◦, idC)
[RJ14, p.10].

Such a monoid consists of an endofunctor T : C → C and two natural transformations
µ : T 2 ⇒ T , η : idC ⇒ T , such that the diagrams

T ◦ T 2 T 2 ◦ T T 2

T 2 T,

idT •µ

idT3 µ•idT

µ

µ

idC ◦ T T 2 T ◦ idC

T.

η•idT

idT

µ

idT •η

idT

8 2 MONADS AS MONOIDS IN THE CATEGORY OF ENDOFUNCTORS

commute. For endofunctors S, S ′ : C → C and a natural transformation α : S ⇒ S ′, the
natural transformation α • idT : S ◦ T ⇒ S ′ ◦ T has components

α(T (A)) ◦ S(idT (A)) = α(T (A)) ◦ S(idT (A)) = α(T (A)) ◦ id(S◦T)(A) = α(T (A))

for A ∈ C, so α • idT = α • T . Similarly, we see idT • α = T • α. Therefore, the previ-
ous diagrams simplify to the diagrams in the following definition, which is the classical
definition of a monad mentioned before.

Definition 2.7. A monad on a category C consists of

• an endofunctor T : C → C,

• a natural transformation µ : T 2 ⇒ T (called multiplication),

• a natural transformation η : idC ⇒ T (called unit),

such that the following two diagrams commute:

T 3 T 2

T 2 T,

T•µ

µ•T µ

µ

T T 2 T

T.

η•T

idT

T•η

µ
idT

We finish this section by giving some examples, many more will be presented in the next
section.

Example 2.8. 1. Any category C admits the trivial monad, given by the identity
functor idC and the identity natural transformations.

2. A monoid (M, ·, 1) induces a monad on the category of sets Set by the following
construction: The endofunctor is M × − : Set → Set , the multiplication is defined
to be

µ(A) : (M × (M × A)) → M × A, (m, (m′, a)) 7→ (m ·m′, a),

and the unit is given by

η(A) : A → M × A, a 7→ (1, a)

[CJ11, Lemma 4].

3. The covariant power set functor P : Set → Set constitutes the power set monad,
where the components of the unit are given by η(A) : A → P(A), a 7→ {a}. The
components of the multiplication µ(A) : P2(A) → P(A) map a set of subsets of A
to its union [AHS04, Exa. 20.2].
To show that (P, µ, η) is a monad, we have to check that the following two diagrams
commute:

P3 P2

P2 P,

P•µ

µ•P µ

µ

P P2 P

P.

η•P

idP

P•η

µ
idP

9

Let A be a set and C ∈ P3(A) a subset of P2(A). It holds(
µ(A) ◦ P(µ(A))

)
(C) = µ(A)

({
µ(A)(D) : D ∈ C

})
= µ(A)

({ ⋃
E∈D

E : D ∈ C

})
=

⋃
D∈C

⋃
E∈D

E

and (
µ(A) ◦ µ(P(A))

)
(C) = µ(A)

(⋃
D∈C

D

)
=

⋃
E∈

⋃
D∈C D

E

=
⋃
D∈C

⋃
E∈D

E,

so the first diagram commutes. The left triangle of the second diagram commutes,
because for B ⊂ A, we calculate(

µ(A) ◦ η(P(A))
)
(B) = µ(A)({B}) = B = idP(A)(B)

and the commutativity of the right triangle follows analogously.

3 Constructions with Monads

In this section, we take a deeper look at monads. First we highlight the well known
construction used to generate monads from adjunctions. Exploiting the results, we derive
various interesting examples, some of which will be encountered later. We also define
the action monad, which corresponds to the Writer monad in Haskell. We then further
investigate the connection between monads and adjunctions, asking if every monad arises
from some suitable adjunction.

3.1 Monads from Adjunctions

The following construction, which gives us an easy way to derive monads from adjunctions,
is due to Huber, see [Hub61, 4.2].

Theorem 3.1 ([Rie17, 5.1.3]). An adjunction

C D

F

U

with unit η : idC ⇒ U ◦ F and counit ϵ : F ◦ U ⇒ idD gives rise to a monad on the
category C, where

10 3 CONSTRUCTIONS WITH MONADS

• the endofunctor T is defined to be U ◦ F ,

• the unit η : idC ⇒ U ◦ F of the adjunction serves as the unit η : idC ⇒ T of the
monad,

• the whiskered counit U • ϵ•F : (U ◦F)2 ⇒ U ◦F is defined to be the multiplication
µ : T 2 ⇒ T .

Proof. We have to verify that the diagrams

(U ◦ F)3 (U ◦ F)2

(U ◦ F)2 U ◦ F,

(U◦F)•µ

µ•(U◦F) µ

µ

U ◦ F (U ◦ F)2 U ◦ F

U ◦ F

η•(U◦F)

id(U◦F)

(U◦F)•η

µ
id(U◦F)

commute. By the naturality of U • ϵ : U ◦ F ◦ U → U , the diagram

(U ◦ F ◦ U)(B) U(B)

(U ◦ F ◦ U)(C) U(C)

(U•ϵ)(B)

(U◦F◦U)(f) U(f)

(U•ϵ)(C)

commutes for objects B,C in C and f : B → C a morphism. In particular, taking
B := (F ◦U ◦F)(A), C := F (A) and f := (ϵ •F)(A) : (F ◦UF)(A) → F (A), this implies

U((ϵ • F)(A)) ◦ (U • ϵ)((F ◦ U ◦ F)(A)) = (U • ϵ)(F (A)) ◦ (U ◦ F ◦ U)((ϵ • F)(A)).

For A an object in C, the previous equation shows that

µ(A) ◦ ((U ◦ F) • µ)(A) = (U • ϵ)(F (A)) ◦ (U ◦ F ◦ U)((ϵ • F)(A))

= U((ϵ • F)(A)) ◦ (U • ϵ)((F ◦ U ◦ F)(A))

= µ(A) ◦ µ((U ◦ F)(A)),

so the first diagram commutes. The commutativity of the second diagram follows directly
from the triangle identities of the adjunction.

This is very useful, as it directly connects adjunctions and monads; and as Mac Lane
noted in [Mac98, p.xii],

“Adjoint functors arise everywhere.”

so 3.1 justifies the (informal) statement

“Monads arise everywhere.”

We emphasize this by giving a plethora of examples, focusing on monads which arise
from free-forgetful adjunctions, which constitute a very important kind of adjunction.
Throughout this text, we will encounter many more examples of monads.

3.1 Monads from Adjunctions 11

Example 3.2. 1. Let Set∗ denote the category of pointed sets; i.e. the objects are pairs
(X, x), whereX is a set and x ∈ X is an element, and a morphism f : (X, x) → (Y, y)
is a function f : X → Y with f(x) = y.
There is a free-forgetful adjunction

Set Set∗,

F

U

given by the forgetful functor U : Set ∗ → Set with left adjoint F : Set → Set∗, which
maps a set X to the pointed set X+ := X ∪{{X}} with basepoint {X} and extends
a map f : X → Y to X+ → Y+ via {X} 7→ {Y }.
By 3.1, this induces a monad on Set . The corresponding endofunctor (−)+ : Set →
Set adds a new disjoint point and extends a map f : X → Y to f+ : X ∪ {X} →
Y ∪ {Y } via {X} 7→ {Y }. The components of the unit are given by the obvious
natural inclusions η(X) : X → X+. The components of the multiplication µ(X) :
(X+)+ → X+ are the identity on the subset X and map the two new points in
(X+)+ to the new point in X+ [Rie17, Exa. 5.1.4].
We will rediscover this monad in Haskell; there it is called the Maybe monad.

2. The free group ⟨X⟩ of a given set X can be defined as follows: Its elements are all
finite words, constructed from the elements of X and their formal inverses, modulo
some obvious relations. The group operation is concatenation of words and the
neutral element is the empty word [Kna06, pp.307].
Let Grp denote the category of groups with group homomorphisms as morphisms.
The forgetful functor U : Grp → Set has a left adjoint F : Set → Grp, which maps
a set X to the free group ⟨X⟩ and extends a function f : X → Y to a group
homomorphism F (f) : ⟨X⟩ → ⟨Y ⟩ [Law06, p.9].. This extension is unique, since by
definition X generates the free group ⟨X⟩. The endofunctor T : Set → Set of the
induced monad, called the free group monad, maps a set X to the free group ⟨X⟩
and extends a function X → Y to ⟨X⟩ → ⟨Y ⟩.
Now the components of the unit are the natural inclusions η(X) : X → ⟨X⟩ and
the components of the multiplication are the maps µ(X) : ⟨⟨X⟩⟩ → ⟨X⟩, given by
concatenation.

3. The category Mon of monoids consists of the monoids as objects and the monoid
homomorphisms as morphisms.
Since we did not explicitly use the group structure in the previous example, a
completely analogous construction can be performed for the forgetful functor U :
Mon → Set and the free monoid, resulting in the free monoid monad. This monad
will reappear in Haskell as the list monad.

4. Let R be a ring. The forgetful functor U : Mod R → Set admits a left adjoint F ,
which maps a set X to the free R-module

⊕
X R and extends morphisms similar to

the previous examples.
This adjunction induces the free R-module monad ; the corresponding endofunctor

12 3 CONSTRUCTIONS WITH MONADS

T : Set → Set maps a set X to its free R-module
⊕

X R and extends a map X → Y
to

⊕
X R →

⊕
Y R by linearity.

The components of the unit η(X) : X →
⊕

X R are again the obvious inclusions.
The components of the multiplication µ(X) :

⊕
X(

⊕
X R) →

⊕
X R are defined by

distributing the coefficients in the formal sum of formal sums.
Interesting special cases are the free abelian group monad and the free vector space
monad.

5. For a ring R and a group G, the group ring (or group algebra) R[G] consists of the
set of maps α : G → R with finite support (α(g) ̸= 0 for only finitely many g ∈ G),
together with pointwise addition and multiplication via

(α · β)(g) =
∑

x·y=g,x,y∈G

α(x) · β(y),

which makes it into a ring. If both R and G are commutative, then so is the group
ring R[G]. Just as in the previous example, one can alternatively think of the
elements of R[G] as formal sums indexed by G, with coefficients in R, which we will
do in the following.
The construction works completely analogous for a monoid M , resulting in the
monoid ring (or monoid algebra) R[M]. The neutral element of addition is 0 and
the neutral element of multiplication is 1 · e, where e is the neutral element of the
monoid. There exists a canonical monoid homomorphism

η(M) : M → (R[M], ·), m 7→ 1 ·m

and a ring homomorphism

ϕ : R → R[M], r 7→ r · e

[Lan02, pp.104]. For example, the polynomial ring R[x1, . . . , xn] is just the monoid
ring R[M], where M is the free commutative monoid generated by the “symbols”
x1, . . . , xn and ϕ is just the inclusion R ⊂ R[x1, . . . , xn].
Choosing R = Z, a monoid homomorphism f : M → N gives rise to a ring homo-
morphism

Z[f] : Z[M] → Z[N],
∑
m∈M

zm ·m 7→
∑
n∈N

 ∑
f(m)=n

zm

 · n. (∗)

Denoting the category of (not necessarily commutative) rings with ring homomor-
phisms as Ring , this defines a functor Z[−] : Mon → Ring , which is left adjoint to
the forgetful functor U : Ring → Mon , given by “forgetting” the addition of a ring
[Mac65, p.61]. The unit η : idMon ⇒ U ◦ Z[−] turns out to be the above defined
family of morphisms. The components of the counit ϵ : Z[−] ◦ U ⇒ idRing are the
maps ϵ(S) : Z[(S, ·)] → S,

∑
s∈S zs ·s 7→

∑
s∈S zs ·s, where the right hand side means

evaluating the formal sum in S.
The endofunctor of the induced monad maps a monoid M to its group ring Z[M],

3.1 Monads from Adjunctions 13

viewed as a monoid via multiplication. A morphism is transformed as described
at (∗), but is regarded as a monoid homomorphism. The unit η of the monad is
just the unit of the adjunction and the components of the multiplication µ(M) :
Z[(Z[M], ·)] → Z[M] are defined by distributing the coefficients.

6. Let M be a monoid and denote the category of M -actions with equivariant maps by

MSet . This means that the objects are pairs (X,α), where X is a set and α : M →
(End(X), ◦, idX) is a homomorphism of monoids. A morphism f : (X,α) → (Y, β)
is a map f : X → Y , such that β(m) ◦ f = f ◦ α(m) for all m ∈ M [Bra17, Def.
2.6.21]. Notice that MSet is isomorphic to the functor category SetM , where M is
viewed as a category with a single object.
The forgetful functor U : Set → MSet admits a left adjoint M ×−, mapping a set X
to (M ×X,m 7→ ((m′, x) 7→ (m ·m′, x))) [EM01, Lemma 2.1]. The induced monad
turns out to be the monad from 2.8.2.

7. The following example is due to Huber in [Hub61, p.371]. Let R be a ring. For more
concise and clearer notation, we write ⟨X⟩ for the free R-module

⊕
X R generated

by X. There is an adjunction between the category of pointed sets Set ∗ and the
category of R-modules Mod R, given by the following functors:
The functor F : Set∗ → Mod R maps a pair (X, x) to the free R-module with the
only relation that x is the base element, namely ⟨X⟩/⟨x⟩. A morphism f : (X, x) →
(Y, y) gives rise to an R-module homomorphism f : ⟨X⟩ → ⟨Y ⟩. By composing
f with the canonical map ⟨Y ⟩ ↠ ⟨Y ⟩/⟨y⟩, we derive an R-module homomorphism
f ′ : ⟨X⟩ → ⟨Y ⟩/⟨y⟩. Since f(x) = y, ⟨x⟩ is a subset of the kernel ker(f ′), so
the isomorphism theorem yields an R-module homomorphism ⟨X⟩/⟨x⟩ → ⟨Y ⟩/⟨y⟩.
This defines the action of F on morphisms.
The functor U : Mod R → Set∗ is forgetful in nature; it maps an R-module to its
underlying set with the zero element as basepoint and since a module homomorphism
preserves the zero element, its action on the morphisms of Mod R is clear.
The components of the unit η : idSet∗ ⇒ U ◦ F of the adjunction are given by the
inclusion η((X, x)) : (X, x) → (⟨X⟩/⟨x⟩, ⟨x⟩). The counit ϵ : F ◦ U ⇒ idMod R

has
components ϵ(M) : ⟨M⟩/⟨0⟩ → M , which act on the generators (the elements of
M) as the inclusion and extend this map by linearity, using that ⟨0⟩ is in the kernel
of the resulting homomorphism.
The endofunctor T : Set∗ → Set∗ of the corresponding monad maps a pointed set
(X, x) to the pointed set (⟨X⟩/⟨x⟩, ⟨x⟩) and extends a map f : (X, x) → (Y, y) to
(⟨X⟩/⟨x⟩, ⟨x⟩) → (⟨Y ⟩/⟨y⟩, ⟨y⟩). The unit of the monad is the same as the unit
of the adjunction, which was already described. The components µ((X, x)) of the
multiplication are morphisms

(⟨(⟨X⟩/⟨x⟩)⟩/⟨⟨x⟩⟩, ⟨⟨x⟩⟩) → (⟨X⟩/⟨x⟩, ⟨x⟩),

which act on the generators, namely the elements of ⟨X⟩/⟨x⟩, as the inclusion and
then extend by linearity (but are regarded as ordinary functions between pointed
sets).

14 3 CONSTRUCTIONS WITH MONADS

3.2 The Action Monad

Definition 3.3. Let (M,µ′, η′) be a monoid in a monoidal category (C,⊗, 1, α, λ, ρ). The
(left) M-action monad is a monad on C, which is defined as follows:

• The endofunctor is M ⊗− : C → C.

• The components µ(A) : M ⊗ (M ⊗A) → M ⊗A of the multiplication are given by
the composition

M ⊗ (M ⊗ A) (M ⊗M)⊗ A M ⊗ A.
α(M,M,A)−1 µ′⊗idA

• The components of the unit η(A) : A → M ⊗ A are given by the composition

A 1⊗ A M ⊗ A.
λ(A)−1 η′⊗idA

Lemma 3.4. The construction from the previous definition actually yields a monad on
C.

Proof. We have to check that the following two diagrams commute for every object A
in C:

M ⊗ (M ⊗ (M ⊗ A)) M ⊗ (M ⊗ A)

M ⊗ (M ⊗ A) M ⊗ A,

idM⊗µ(A)

µ(M⊗A) µ(A)

µ(A)

M ⊗ A M ⊗ (M ⊗ A) M ⊗ A

M ⊗ A.

η(M⊗A)

idM⊗A
µ(A)

idM⊗η(A)

idM⊗A

By the definition of a monoidal category, it holds

α(M ⊗M,M,A)−1 ◦ α(M,M,M ⊗ A)−1

= α(M,M,M)−1 ⊗ idA ◦ α(M,M ⊗M,A)−1 ◦ idM ⊗ α(M,M,A)−1 :

M ⊗ (M ⊗ (M ⊗ A)) → ((M ⊗M)⊗M)⊗ A

and since (M,µ′, η′) is a monoid, we also have

µ′ ◦ (µ′ ⊗ idM) ◦ α(M,M,M)−1 = µ′ ◦ idM ⊗ µ′.

3.3 The Eilenberg-Moore Category 15

Using those two identities, we calculate

µ(A) ◦ µ(M ⊗ A) = µ′ ⊗ idA ◦ α(M,M,A)−1 ◦ µ′ ⊗ idM⊗A ◦ α(M,M,M ⊗ A)−1

= µ′ ⊗ idA ◦ (µ′ ⊗ idM)⊗ idA ◦ α(M ⊗M,M,A)−1 ◦ α(M,M,M ⊗ A)−1

= µ′ ⊗ idA ◦ (µ′ ⊗ idM)⊗ idA ◦ α(M,M,M)−1 ⊗ idA

◦ α(M,M ⊗M,A)−1 ◦ idM ⊗ α(M,M,A)−1

= (µ′ ◦ idM ⊗ µ′)⊗ idA ◦ α(M,M ⊗M,A)−1 ◦ idM ⊗ α(M,M,A)−1

= µ′ ⊗ idA ◦ (idM ⊗ µ′)⊗ idA ◦ α(M,M ⊗M,A)−1 ◦ idM ⊗ α(M,M,A)−1

= µ′ ⊗ idA ◦ α(M,M,A)−1 ◦ idM ⊗ (µ′ ⊗ idA) ◦ idM ⊗ α(M,M,A)−1

= µ(A) ◦ idM ⊗ µ(A),

where the second and penultimate equality hold since α−1 is natural. This shows that the
first diagram commutes. The commutativity of the second diagram follows similarly.

Example 3.5. 1. In 2.4.1, we established that a monoid in the monoidal category of
sets Set is just an ordinary monoid. Thus, we recognize 2.8.2 as the action monad
in that category. In Haskell, this monad is called Writer.

2. Let K be a field and consider the monoidal category of K-vector spaces VectK with
the tensor product as monoidal product. From 2.4.2, we know that the monoids in
this monoidal category are the associative K-algebras. For a fixed K-algebra M , the
corresponding action monad consists of the endofunctor M ⊗ − : VectK → VectK ,
the multiplication

µ(A) : M ⊗ (M ⊗ A) → M ⊗ A, (m⊗ (m′ ⊗ a)) 7→ (m ·m′)⊗ a,

and the unit
η(A) : A → M ⊗ A, a 7→ 1⊗ a.

3. The previous example can be generalized by fixing a ring R and examining the
category of R-modules Mod R with the tensor product as its monoidal product. In
that case, a monoid is an R-algebra, and analogous formulas hold for the action
monad. As a special case, the same holds for the category of abelian groups Ab;
here the monoids are just rings, see 2.4.3.

4. By 2.4.4, a monoid in (Cat ,×) is a strict monoidal small category. Let (C, µ′, 1)
denote such a category. The endofunctor of the corresponding action monad is
C × − : Cat → Cat . The components of the multiplication µ are functors µ(A) :
C × (C × A) → C × A, mapping an object (A, (A′, B)) to (µ′(A,A′), B) and a
morphism (f, (f ′, g)) to (µ′(f, f ′), g). The unit η is given by the family of functors
η(A) : A → C ×A, mapping an object A to (1, A) and a morphism f to (id1, f).

3.3 The Eilenberg-Moore Category

By 3.1, every adjunction induces a monad on the domain of its left adjoint. However,
there are also monads which are not directly constructed from an adjunction; for example,

16 3 CONSTRUCTIONS WITH MONADS

the power set monad from 2.8.3. So it is natural to ask whether all monads arise this way.
Eilenberg and Moore proved in 1965 that this is indeed the case, using the following
construction, which was later named after them.

Definition 3.6. Let C be a category and (T, µ, η) be a monad on C. The Eilenberg-
Moore category CT for T or (category of T -algebras) is defined as follows:

• Its objects (called T -algebras) are pairs (A ∈ C, a : T (A) → A), such that the
diagrams

A T (A)

A,

η(A)

idA
a

T 2(A) T (A)

T (A) A

µ(A)

T (a) a

a

commute.

• Its morphisms f : (A, a) → (B, b) (called T -algebra homomorphisms) are morphisms
f : A → B in C, such that the square

T (A) T (B)

A B

T (f)

a b

f

commutes.

Composition and identities are just those of C.

Intuitively, T acts on a T -algebra in such a way that is compatible with the unit and
multiplication of the monad. This becomes more apparent by considering some examples.

Example 3.7. 1. For the monad on Set induced by the free-forgetful adjunction from
3.2.1, an algebra is a set A with a map a : A+ → A such that the previous diagrams
commute. The commutativity of the triangle means that a : A+ → A is the identity
on A ⊂ A+, whereas the square imposes no additional constraints.
Therefore, an algebra is a set with a special point a ∈ A, which is the image of the
extra point under the map a : A+ → A.
A morphism f : (A, a) → (B, b) is a map f : A → B, such that the diagram

A+ B+

A B

f+

a b

f

commutes. The function f+ maps the extra point in A+ to the extra point in B+, so
this condition demands f(a) = b. We conclude that the Eilenberg-Moore category
for this monad is isomorphic to Set∗ [Rie17, Exa. 5.2.6].

3.3 The Eilenberg-Moore Category 17

2. Consider the free group monad from 3.2.2 and write the elements of the free group
as words of the form [x, y, z]. The group operation is concatenation ◦ of words. An
algebra with respect to this monad is a set A, together with a map a : ⟨A⟩ → A,
making the diagrams

(∗)
A ⟨A⟩

A,

η(A)

idA
a

⟨⟨A⟩⟩ ⟨A⟩

⟨A⟩ A

µ(A)

T (a) a

a

(∗∗)

commute. We claim that defining

· : A× A → A, (x, y) 7→ a([x, y])

gives A a group structure with neutral element a(e), where e denotes the neutral
element of ⟨A⟩; that is, the empty word. Indeed, for x ∈ A, it holds

a(e) · x = a([a(e), x])
(∗)
= a([a(e), a(η(A)(x))])

= a([a(e), a([x])])

= (a ◦ T (a))([e, [x]])
(∗∗)
= (a ◦ µ(A))([e, [x]])
= a(e ◦ [x])

= a([x])
(∗)
= x.

Analogously, it follows x · a(e) = x for any x ∈ A, so a(e) indeed acts as a neutral
element. Associativity holds for any x, y, z ∈ A, as the caluclation

(x · y) · z = a([a([x, y]), z])
(∗)
= a([a([x, y]), a([z])])

= (a ◦ T (a))([[x, y], [z]])
(∗∗)
= (a ◦ µ(A))([[x, y], [z]])
= a([x, y, z])

= (a ◦ µ(A))([[x], [y, z]])
(∗∗)
= (a ◦ T (a))([[x], [y, z]])
(∗)
= a([x, a([y, z])]) = x · (y · z)

18 3 CONSTRUCTIONS WITH MONADS

shows. The inverse of an element x ∈ A is given by a(x−1), because

a(x−1) · x = a([a(x−1), x])
(∗)
= a([a(x−1), a([x])])

= (a ◦ T (a))([[x−1], [x]])
(∗∗)
= (a ◦ µ(A))([[x−1], [x]])

= a([x−1, x]) = a(e)

and similarly x·a(x−1) = a(e). It follows that every T -algebra has a group structure,
defined as above.
A T -algebra homomorphism f : (A, a) → (B, b) is a map f : A → B, making the
diagram

⟨A⟩ ⟨B⟩

A B

T (f)

a b

f

commute. For x, y ∈ A, it holds

f(x · y) = f(a([x, y])) = b(T (f)([x, y])) = b([f(x), f(y)]) = f(x) · f(y),

so any T -algebra homomorphism is a group homomorphism.
Notice that a map a : ⟨A⟩ → A amounts to a collection (an)n≥0 : A

n → A of maps.
With this interpretation, the diagram (∗) just states that a1 has to be the identity.
The diagram (∗∗) means that given a word of words

[[x1,1, . . . , x1,m1], . . . , [xn,1, . . . , xn,mn]],

first concatenating the words into one word, and then applying a(m1+···+mn) has to
be the same as using an on the results of applying the appropriate ai to each of the
subwords.
Using this, it is easy to see that any group G constitutes a T -algebra. For this,
define g : ⟨G⟩ → G as follows:

• g0 chooses the neutral element of G,

• g1 is the identity,

• g2 is the multiplication of G,

• gn for n > 2 iterates the multiplication of G.

This is well-defined and makes the diagram (∗∗) commute, because multiplication
in G is associative. Since the diagram (∗) commutes by definition of g1, (G, g) is a
T -algebra.

3.3 The Eilenberg-Moore Category 19

Moreover, every group group homomorphism f : G → H amounts to a T -algebra
homomorphism (G, g) → (H, h), because for x = [x1, . . . , xn] ∈ ⟨G⟩, it holds

f(g(x)) = f(gn(x1, . . . , xn)) = f(x1 · . . . · xn) = f(x1) · . . . · · · f(xn)

= hn(f(x1), . . . , f(xn)) = h([f(x1), . . . , f(xn)]) = h(T (f)(x)).

We conclude that the category of algebras of the free group monad is isomorphic to
the category of groups Grp.

3. With a completely analogous calculation as in the previous example, we see that
the category of algebras of the free monoid monad from 3.2.3 is isomorphic to the
category of monoids Mon .

4. Let (M, ·, 1) be a monoid. For the action monad M ×− : Set → Set from 3.5.1, an
algebra is a set A, together with a map a : M × A → A, such that the diagrams

A M × A

A,

η(A)

idA
a

M × (M × A) M × A

M × A A

µ(A)

idM×a a

a

commute. The first diagram states that a(1,−) = idA, while the second one means
that a(m, a(m′, x)) = a(m ·m′, x) for any x ∈ A, m,m′ ∈ M . But this just describes
a left M -action on A, so the algebras are precisely the left M -sets. For a morphism
f : (A, a) → (B, b), the diagram

M × A M ×B

A B

idM×f

a b

f

commutes if and only if f(a(m,x)) = b(m, f(x)) for all x ∈ A, m ∈ M . Writing ·
for a and b, this means that f(m · x) = m · f(x).
In conclusion, the Eilenberg-Moore category for the M ×− monad is isomorphic to

MSet .

5. Let R be a ring. Consider the monad R ⊗ − : Ab → Ab from 3.5.3. An algebra is
an abelian group A, equipped with a group homomorphism a : R ⊗ A → A, such
that the diagrams

A R⊗ A

A,

η(A)

idA
a

R⊗ (R⊗ A) R⊗ A

R⊗ A A

µ(A)

idR⊗a a

a

20 3 CONSTRUCTIONS WITH MONADS

commute. By the universal property of the tensor product, a is equivalent to a
bilinear map · : R × A → A, (r, x) 7→ a(r ⊗ x). The first diagram means that
1 · x = x for all x ∈ A and the second diagram translates to r · (r′ · x) = (r · r′) · x
for all r, r′ ∈ R, x ∈ A. A morphism f : (A, a) → (B, b) of algebras is a group
homomorphism f : A → B, making the diagram

R⊗ A R⊗B

A B

idR⊗f

a b

f

commute; that is, it satisfies f(r · x) = r · f(x) for all r ∈ R, x ∈ A. We conclude
that the Eilenberg-Moore category of this monad is isomorphic to Mod R.

Generalizing the last three examples, with a general enough notion of “M -actions”, it is
not hard to show that the Eilenberg-Moore category of an action monad is isomorphic to
the category of M -actions, see [Sea13, Prop. 3.2.1].

The motivation for the definition of the Eilenberg-Moore category lies in the following
theorem, which was proven by Eilenberg and Moore in 1965.

Theorem 3.8 ([EM65, Thm. 2.2]). For a monad (T, µ, η) on a category C, there exists
an adjunction

C CT

FT

UT

between C and the Eilenberg-Moore category CT , whose induced monad is (T, µ, η) and
such that UT is faithful.

Proof. The functor UT : CT → C is forgetful in nature; an object (A ∈ C, T (A) → A) gets
mapped to A and a morphism f : (A, a) → (B, b) becomes f : A → B. It is clear that
UT is faithful.
The functor F T : C → CT is defined by

F T (A) =
(
T (A), µ(A) : T 2(A) → T (A)

)
, F T (f) = T (f),

where A is an object and f : A → B is a morphism in C. It is easy to check that this is
indeed a functor; for example T (f) is a morphism in CT by the naturality of µ.
Since UT ◦ F T = T , the unit of the adjunction F T ⊣ UT can be defined to be the unit
η : idC ⇒ T of the monad T . The counit of the adjunction is characterized as follows:

ϵ : F T ◦ UT ⇒ idCT , ϵ((A, a)) = a : (T (A), µ(A)) → (A, a).

The diagram

3.4 The Kleisli Category 21

T 2(A) T (A)

T (A) A

T (a)

µ(A) a

a

commutes by the definition of a T -algebra and thus shows that the components of ϵ are
morphisms in CT . Moreover, ϵ is natural, because for f : (A, a) → (B, b) a morphism in
CT , the diagram

(T (A), µ(A)) (A, a)

(T (B), µ(B)) (B, b)

a

T (f) f

b

commutes by the definition of a T -algebra homomorphism. It is left to show that F T ⊣ UT

is actually an adjunction; i.e. that η and ϵ satisfy the triangle identities

F T F T ◦ UT ◦ F T

F T ,

FT •η

id
FT

ϵ•FT

UT UT ◦ F T ◦ UT

UT .

η•UT

id
UT

UT •ϵ

The first diagram commutes, because for A ∈ C, it holds

ϵ(F T (A)) ◦ F T (η(A)) = µ(A) ◦ T (η(A)) = idT (A) = idT (A) = idFT (A)

by the definition of a monad. In the same vein, the second diagram commutes, since for
(A, a) ∈ CT , we observe

UT (ϵ((A, a))) ◦ η(UT ((A, a))) = a ◦ η(A) = idA = idUT ((A, a))

by the definition of a T -algebra. Finally, the whiskered counit UT • ϵ•F T : T 2 ⇒ T turns
out to have the desired components due to the calculation(

UT • ϵ • F T
)
(A) = UT (ϵ(T (A), µ(A))) = UT (µ(A)) = µ(A),

so we conclude that F T ⊣ UT is an adjunction which induces the monad (T, µ, η).

3.4 The Kleisli Category

In the same year that Eilenberg and Moore published their paper solving the problem
of finding an adjunction that induces a given monad, Kleisli found another construction
which also solves this problem.

Definition 3.9. Let C be a category and (T, µ, η) be a monad on C. TheKleisli category
CT consists of the following:

• Its objects are the objects of C.

• A morphism f : A → B in CT is a morphism A → T (B) in C. To avoid confusion,
we denote such a morphism by A⇝ B.

22 3 CONSTRUCTIONS WITH MONADS

For A ∈ CT , the unit η(A) : A → T (A) defines the identity morphism A⇝ A in CT . The
composition of morphisms f : A → T (B) and g : B → T (C) is given by

A T (B) T 2(C) T (C).
f T (g) µ(C)

We call the composition of morphisms in the Kleisli category Kleisli composition, in order
to differentiate it from the composition in the original category C.

The Kleisli category is especially important when using monads in functional program-
ming languages, as we will soon see. It is also interesting to note that the original category
defined by Kleisli in his paper [Kle65] was slightly different, in particular the morphisms
A⇝ B in his category were defined to be morphisms T (A) → B.
We give some examples to highlight the interesting structures that arise.

Example 3.10. 1. The category of relations Rel consists of sets as objects and a
morphism R : A → B is a relation R ⊂ A×B. The composition of two morphisms
R : A → B, S : B → C is given by

S ◦R = {(a, c) : ∃b ∈ B : (a, b) ∈ R ∧ (b, c) ∈ S} ⊂ A× C

and the identity is the diagonal idA = {(a, a) : a ∈ A} ⊂ A×A [Bra17, Exa. 2.2.25].
The Kleisli category SetP of the power set monad from 2.8.3 is isomorphic to Rel :
The objects of SetP are just the sets and a morphism f : A ⇝ B, represented by
f : A → P(B), can be viewed as the relation f = {(a, b) : b ∈ f(a)} ⊂ A× B. The
composition g ◦ f of two morphism f : A → P(B) and g : B → P(C) in the Kleisli
category is

x 7→ (µ(C) ◦ P(g) ◦ f)(x) =
⋃

y∈f(x)

g(y).

With the above interpretation, this becomes{
(a, c) : c ∈

⋃
y∈f(a)

g(y)
}
= {(a, c) : ∃y ∈ f(a) : c ∈ g(y)}

= {(a, c) : ∃y ∈ B : (a, y) ∈ f ∧ (y, c) ∈ g},

so the Kleisli category SetP is indeed isomorphic to Rel .

2. An object in the Kleisli category of the monad induced by the free-forgetful adjunc-
tion from 3.2.1 is just a set and a morphism A ⇝ B is a function A → B+. This
can be interpreted as a partially-defined function, where the elements of A that are
mapped to the extra basepoint, are thought of as having “undefined” output. This
will become more apparent later, when we study the Maybe monad. The compo-
sition of two partially-defined functions amounts to the maximal partially-defined
function. Therefore, the Kleisli category of this monad is isomorphic to the category
of sets with partially-defined functions [Rie17, 5.2.10].

3. Consider the free group monad from 3.2.2. An object in the corresponding Kleisli
category is just a set. A morphism A⇝ B is a function A → ⟨B⟩ and for morphisms
f : A ⇝ B, g : B ⇝ C, their composition g ◦ f : A ⇝ C is defined as follows: For

3.4 The Kleisli Category 23

a ∈ A, f is applied to a, resulting in a list consisting of elements of B. Then g is
applied to each of the elements of the list, yielding a list of lists. Finally, the sublists
are concatenated and the resulting list is the image of a under g ◦ f .

The following theorem stands in analogy to 3.8 and shows that given a monad, the Kleisli
category of that monad permits an adjunction which induces that original monad.

Theorem 3.11 ([BW00, p.88]). For a monad (T, µ, η) on a category C, there is an ad-
junction

C CT

FT

UT

between C and the Kleisli category CT , which induces the monad (T, µ, η).

Proof. The functor FT : C → CT acts on objects as the identity and maps a morphism
f : A → B in C to

A⇝ B, A B T (B).
f η(B)

The functor UT : CT → C sends an object A ∈ CT to T (A) ∈ C and a morphism f : A →
T (B) in CT to

T (A) → T (B), T (A) T 2(B) T (B).
T (f) µ(B)

It is easy to check that FT and UT are indeed functors. For instance, FT is well-behaved
with respect to composition, because for morphisms f : A → B, g : B → C in C, the
diagram

A B T (B) T (C) T 2(C) T (C)

C

f η(B)

g

T (g) T (η(C))

idT (C)

µ(C)

η(C)

commutes by naturality of η and by the definition of a monad.
With these definitions, FT ⊣ UT become adjoint functors. Indeed, for A and B objects in

C, a natural isomorphism α(A,B) : HomC(A,UT (B))
∼=−→ HomCT (FT (A), B) is the same

as a natural isomorphism HomC(A, T (B)) ∼= HomCT (A,B), which exists by definition.
It is left to check that the adjunction FT ⊣ UT actually induces the monad (T, µ, η).
Clearly UT ◦ FT = T and the unit of the adjunction FT ⊣ UT is indeed equal to the unit
η of the monad:

α−1(A,FT (A))(idFT (A)) = η(A) : A → T (A).

Similarly, the counit ϵ : FT ◦ UT ⇒ idCT has components

ϵ(A) = α(UT (A), A)(idUT (A)) = idT (A) : T (A)⇝ A,

so the multiplication T 2 ⇒ T of the induced monad is

(UT • ϵ • FT)(A) = UT (idT (A)) = µ(A) ◦ T (idT (A)) = µ(A) ◦ idT 2(A) = µ(A).

24 4 CATEGORY THEORY IN HASKELL

4 Category Theory in Haskell

In this section, we establish a connection between category theory and Haskell. But first,
we briefly highlight some of Haskell’s key features and principles and give an introduction
to the language. We then define the cartesian closed category Hask , which allows us to
describe a large part of Haskell using the language of category theory. As a prerequisite
for understanding monads in Haskell, we study the Functor type class.

4.1 Haskell as a Functional Programming Language

Many popular programming languages like Java or C are imperative languages. This kind
of programming languages is characterized by having an implicit state, which can be
altered by constructs (i.e. commands) in the source language. This state can be roughly
thought of as a collection of “global” variables; that is, variables, which are available
to every part of the program. This means that other constructs in the program can
potentially change these values. We say that a construct has side-effects, if it alters the
implicit state. In contrast, declarative languages do not have an implicit state, so in
particular, no side-effects can occur and once a value is assigned to a variable, its value
cannot change [Hud89, p.361].
As a very simple example, suppose x is a global variable in a larger program, which defines
the function

function f() {

x := 1

}

This pseudocode notation means that f denotes a function, which takes no arguments
and assigns the value 1 to the global variable x. Thus, this function has side-effects, since
it changes the value of x, which can be accessed by other parts of the program.
Functions, which have no side-effects and do not depend on the implicit state of the
program are called pure. This means that given the same input (the same arguments),
they will always return the same output.
For instance, suppose the program from the previous example also defines the function

function g() {

if x=0 print "x is zero."

else print "x is not zero."

}

The function g takes no arguments, but still depends on x; i.e. it depends on the implicit
state of the program and is thus not pure. If x is set to zero somewhere in the program,
and then g is run, it will print x is zero. On the other hand, if f runs directly before g,
then g will print x is not zero.

A functional programming language is a declarative language which models computations
by functions. This usually works by defining a main function in terms of other functions,
which in turn make use of other functions, until at the bottom level the language’s key-
words are used.

4.2 A Brief Introduction to Haskell 25

While there are some languages that support parts of both imperative and functional
programming, Haskell is a purely functional programming language, so it only permits
the use of pure functions. This means that a function can only return its result and
cannot make any “global” changes, which closely resembles the notion of a mathematical
function. In particular, a variable can freely be replaced by its value and vice versa, which
oftentimes allows programmers to prove that a function acts as desired. This feature of
(pure) functional programming languages is called referential transparency [Hug89, p.98].
The analogue in Haskell 1 to the function g from the example above is

g :: Int -> IO ()

g x = if x == 0

then putStr "x is zero."

else putStr "x is not zero."

Here g is a function taking one argument, namely x.

4.2 A Brief Introduction to Haskell

In the following, we briefly introduce the reader to the most important concepts in Haskell
that are needed to understand the following pages.

Haskell is a statically typed language, which means that every expression in an Haskell
program has a data type, which is known at compile time. A data type consists of a
collection of possible values. It is often helpful to think of data types as sets. In this
interpretation, the values become the elements of the corresponding set.
Many important data types come predefined in the standard library Prelude, which is
automatically loaded by every Haskell program, unless explicitly disabled. We list some
of those data types:

Data Type Description Exemplary Values
Int fixed-precision integers -10, 0, 1, 42

Float real floating-point, single precision -2.1, 1.0, 5.0

Bool truth values False, True

Char single characters ’1’, ’a’, ’!’

String strings "haskell", "", "some words"

[Mar10, 6.1,6.4].
As a functional programming language, every Haskell source file consists of a number
of functions. Therefore, it is important to know how to work with functions in Haskell.
Functions take a finite amount of parameters (arguments) as input and always return
exactly one value.2 Of course, it can also happen that a function loops indefinitely or
encounters an error. In the first case, the program will not terminate, until the memory
capacity of the computer is reached and the program crashes. In the second case, the
program will terminate immediately.

1All the Haskell code in this text refers to the latest official release of Haskell, compiled using the
Glasgow Haskell Compiler (GHC) 8.10.2.

2Technically, functions in Haskell always take exactly one argument, but this can be conveniently
ignored due to Haskell’s syntax. The details will be explained later.

26 4 CATEGORY THEORY IN HASKELL

The Haskell syntax to apply a function f to the values x, y and z is f x y z. Of course,
this presupposes that f is a function taking three arguments and that x, y and z have
suitable data types.
For instance, consider the Haskell function squareInt:

squareInt :: Int -> Int

squareInt x = x^2

As mentioned, every expression has a data type. It is usually not necessary, but often
helpful, to explicitly state the type of an expression. This is exactly what the first line of
the source code expresses; it establishes squareInt as a function, which takes a value of
type Int and returns a value of type Int. The second line defines the actual function: x
is the single argument of the function, and the part at the right of the equals sign tells
Haskell how to compute the return value of the function. In this case, it just squares the
given integer.
In order to apply the function squareInt to the number 5, we write

squareInt 5

A fundamental concept in both mathematics and Haskell is the composition of functions.
Inspired by the typical notation ◦ in mathematics, Haskell uses the symbol . to denote
function composition. Its usage can be demonstrated by the following Haskell code:

squareInt . (\x -> x + 3)

The expression in the bracket is called a lambda expression. It defines a function that
expects an argument x and returns x + 3. So composing this lambda expression with
squareInt yields a function, which takes an integer, adds 3 to it, squares it, and then
returns the result. For instance, the expression

(squareInt . (\x -> x + 3)) 2

which applies our newly composed function to the integer 2, is equal to 25.

Another key tool in Haskell are lists. A list is a ordered collection of values of the same
data type. For instance, the expression

[1,2,3]

is a list, consisting of three integers.
Lists are widely used in Haskell; for example, we can apply a function to every element
in a list by using the map function:

map squareInt [1,2,3]

evaluates to [1,4,9].

A type variable is a variable which represents a type. This is useful since there are
functions that make sense for many types. For example, the signature of the map function
is

4.2 A Brief Introduction to Haskell 27

map :: (a -> b) -> ([a] -> [b])

This means that map transforms a function a -> b into a function [a] -> [b]. a and b

are type variables. When invoking map as in the example before, Haskell automatically
chooses the correct type for a and b; in that case both were set to Int. A value is called
polymorphic if its type contains at least one type variable. Thus, map is polymorphic
and so is the empty list [], since it has type [a] and thus belongs to every list type.
A polymorphic type essentially refers to a family of types. As another example, the
polymorphic function const is defined as follows:

const :: a -> (b -> a)

const x = \y -> x

In words, const takes a value x of type a and returns a function b -> a, which - regard-
less of its argument - always returns x.
To distinguish normal data types like Int or String from type variables, the former are
required to start with a capital letter, whereas the latter must begin in lower case or with
an underscore [Mar10, 1.4].

Using the last two examples, we briefly discuss how to read the type signature of functions.
First, brackets in the signature can sometimes be omitted, because -> is right-associative.
For example, the signature of map simplifies to

map :: (a -> b) -> [a] -> [b]

and the type signature of const becomes

const :: a -> b -> a

By currying, we can alternatively view const as a function

const :: (a,b) -> a

The data type (a,b) consists of pairs, where the first entry is of type a and the second is
of type b. This allows us to view const as a function that essentially takes two arguments
and simply returns the first one.
In fact, all functions in Haskell technically take exactly one argument. However, the
syntax of Haskell often hides this fact and allows us to conveniently define functions
as if they had multiple arguments. For instance, the definition of const given above
might look laborious to an experienced Haskell programmer. The following, equivalent
definition would generally be preferred, since it is more concise and avoids unnecessary
lambda expressions.

const :: a -> b -> a

const x _ = x

The underscore is used to denote a variable whose value is not accessed and thus is
irrelevant. It could be replaced by y or a similar variable name.
As another, more complex example, consider the following two functions:

28 4 CATEGORY THEORY IN HASKELL

1 repeatChar :: Int -> Char -> String

2 repeatChar n c = repeatCharRecursive n c ""

3

4 repeatCharRecursive :: Int -> Char -> String -> String

5 repeatCharRecursive 0 c str = str

6 repeatCharRecursive n c str = repeatCharRecursive (n-1) c (c:str)

The function repeatChar takes an integer n and a character c and returns a string
repeating that character n times.3 To produce its return value, it simply calls the function
repeatCharRecursive with the original values received and the empty string as an extra
argument. As the name suggests, the repeatCharRecursive function uses recursion.
If the supplied integer is zero, it simply returns the string. This is achieved by line
5 in the definition of repeatCharRecursive. Haskell’s pattern matching means that if
the supplied integer n is not zero, then the pattern in line 5 does not match and the
corresponding expression is not returned. Instead, the pattern in the next line is checked.
Names starting with a lowercase letter, like n, c or str always match. Therefore, when
n is non-zero, the definition in line 6 matches. There the recursive step happens and the
function calls itself with the by one reduced integer, the same character, and the string
c:str, which is the string str, but with the character c attached at the front.
For example, the expression

repeatChar 3 'a'

is evaluated as follows:

repeatChar 3 'a'

▷ repeatCharRecursive 3 'a' ""

▷ repeatCharRecursive 2 'a' "a"

▷ repeatCharRecursive 1 'a' "aa"

▷ repeatCharRecursive 0 'a' "aaa"

▷ "aaa"

Functions with multiple arguments can be partially applied, which refers to calling a
function with less arguments than it actually requires [HF92, p.10]. This relies on the
fact that all functions in Haskell are curried: By calling a function f , which requires n
arguments, with the parameters a1, . . . , ak, k < n, we derive a function taking n − k
parameters ak+1, . . . , an and returning f(a1, . . . , an). For example, the expression

const True

has data type b -> True and it could further be used in the following way:

map (const True) [1,2,3]

This expression evaluates to [True,True,True].

3As described before, repeatChar is technically curried. It takes an integer n and returns a function
which takes a character c and yields the respective string. We will continue to say that a function takes
multiple arguments, well knowing that strictly speaking this is not true.

4.3 The Category Hask 29

A type constructor takes zero or more data types to create a new data type. If the required
number of data types is zero, this just amounts to an ordinary data type like String or
Int. However, type constructors which take at least one data type are not data types
themselves [Lip11, p.117]. For example, the list type constructor, often denoted by [],
needs precisely one data type T in order to produce a proper data type, namely the list
data type containing elements of type T. For instance, applying the list type constructor
to the type Int yields the data type [Int].

As a final topic in our short explanation of the core features of Haskell, we look at type
classes, which were originally introduced in the paper [WB89]. A type class is an interface
that defines some behavior. If a data type is an instance of a type class, it implements
and supports that behavior.
For example, the Eq class is a collection of types, for which a notion of “equal” and
“unequal” exists. An instance needs to define the function == for checking equality or the
function /= for checking inequality. Many types like Int, Float, Char etc. are instances
of Eq [Jon95, 3.1].

4.3 The Category Hask

Haskell first appeared in 1990 and was named after the logician Haskell B. Curry. It was
designed by a committee, constituted of many academics with a computer science or math-
ematical background. As a result, the syntax is very close to conventional mathematical
notation [Hud+07, p.12].
For example, if we model the mathematical notion of a set as a list in Haskell, then the
set

X =
{
(x, x2) : x ∈ {1, . . . , 5}

}
translates to the list

x = [(x,x^2) | x <- [1..5]]

in Haskell.
Not only is the syntax of Haskell inspired by common mathematical notation, but there
are also many concepts of the language which were directly taken from category theory.
To understand the influence of category theory on Haskell, we first have to define a cate-
gory that describes Haskell.

It is tempting to define the following pseudo-category:

• The objects are the data types of Haskell.

• A morphism f : a → b is a function f :: a -> b in Haskell.

The composition is given by the . operator and the identity morphism for a data type a
is id :: a -> a, which is the function taking a value of data type a and returning that
same value. Equality of functions means that they return the same output for every input
of the correct type.

30 4 CATEGORY THEORY IN HASKELL

However, the definition of equality of morphisms is problematic: A function a -> b is
also a value of type a -> b. Thus, equality of two functions a -> b should also mean
that their values agree. In the following, we construct two functions for which this does
not hold.
In denotational semantics, an area of computer science which tries to formalize the mean-
ing of programming languages, the symbol ⊥ (called bottom) represents computations
that never complete successfully. In particular, this includes functions which loop indef-
initely or yield an error. In Haskell, the undefined value corresponds to bottom and
evaluating it leads to an error. undefined is polymorphic and can be of any type.
The seq function in Haskell plays a special role. It is defined as follows:

seq x y =

{
⊥ if x = ⊥
y otherwise

.

Now consider the functions

undef1 :: a -> b

undef1 = undefined

undef2 :: a -> b

undef2 = const undefined

The undef1 function is simply defined to be undefined, which as mentioned can be of any
type, so in particular of type a -> b. In contrast, in the definition of undef2, undefined
has type b. By definition of the const function, undef2 ignores its argument of type a

and evaluates undefined; i.e. it results in an error.
Using the seq function, we see that

seq undef1 0 = undefined

seq undef2 0 = 0

so the value of undef1 and undef2 must be different. However, undef1 and undef2

represent the same function, since they return the same output given the same input.
One approach to solve this problem works by introducing a slightly different composition
function, namely f .! g = ((.) $! f) $! g [Wikibook]. We will not follow this ap-
proach further.
Instead, we restrict ourselves to a subset of Haskell, such that types do not have bottom
values and all functions terminate. We call the resulting category Hask .
Due to our restrictions, Hask is very similar to Set and in particular cartesian closed
[HaskellWiki]:

• The data type () constitutes a terminal object. There exists a unique value of type
(), which is also denoted by ().

• The product of two data types a and b is the data type (a,b) together with the
projections fst :: (a,b) -> a and snd :: (a,b) -> b. The values of (a,b) are
pairs. fst and snd return the first or second component of the pair, respectively.

• For two data types a and b, the data type a -> b is the corresponding exponential
object.

4.4 The Functor Type Class 31

There also is a different idea to construct a cartesian closed category that describes Haskell.
It uses the fact that Haskell is based on the typed lambda calculus, a formal system in
logic to express computations. In [LS88, 10,11], it is demonstrated that any typed lambda
calculus gives rise to a cartesian closed category. It is also shown that a cartesian closed
category corresponds to a typed lambda calculus, which is called its internal language.
The two constructions give rise to an equivalence between appropriately defined cate-
gories.
The details require knowledge about the lambda calculus and type theory; the interested
reader is directed to mentioned book. It is also interesting to note that the seq function
is not definable in the lambda calculus. This is one of the reasons why the inclusion of
seq into Haskell was controversial [Hud+07, 10.3].

Another approach is to to use a category of cpos to model Haskell; more information on
cpos can be found in [GS90].

The following table summarizes the connection between Hask and Set and illustrates
common notation.

Category Theory Hask Set
object data type a with values (without bottom) sets A with elements

morphism (terminating) function f :: a -> b function f : A → B
terminal object () singleton set {∗}

product (a,b) A×B
exponential object data type a -> b hom-set Hom(A,B)

4.4 The Functor Type Class

The endofunctors Hask → Hask are modeled by the Functor type class in Haskell. The
most important part of its class declaration looks like this:

class Functor f where

fmap :: (a -> b) -> f a -> f b

This means that a type constructor f, which takes one type argument, is a functor, if it
implements the function fmap. It must additionally satisfy the axioms of a functor from
category theory; i.e. it must hold that

fmap id = id

fmap (f . g) = fmap f . fmap g

Identities like these cannot be enforced by Haskell. Instead, the programmer has to check
that they hold if a new instance of the Functor type class is defined. Of course, all the
instances of Functor from the standard library satisfy the functor laws [Mar10, 13.1].
Applying fmap to a morphism a -> b is called lifting the morphism.4

Notice that the type constructor itself represents the action of the endofunctor on the
objects of Hask . The fmap function corresponds to the action on the morphisms of Hask .
For example, the list type constructor becomes a functor by the following definition:

4Recall that by right-associativity of ->, fmap is just a function taking a morphism a -> b and
returning the “lifted” morphism f a -> f b.

32 5 MONADS IN HASKELL

instance Functor [] where

fmap = map

The second line is short notation for fmap f list = map f list, so a function f :: A

-> B becomes a function [A] -> [B] by applying f to every entry in the supplied list.

5 Monads in Haskell

In this section, we put our gained knowledge to work by looking at some applications
of monads in Haskell. We start by studying the type class Monad and after that define
extension systems, which are an equivalent way to describe monads. We then fill the
concept of monads in Haskell with life by looking at some examples. Those include the
list monad, the Maybe monad and the Writer monad.

5.1 The Monad Type Class

We discussed that Haskell, as a purely functional programming language, makes it im-
possible to change the value of a variable once it is set. This might seem limiting at first.
Indeed, the reader surely knows of many algorithms which make use of a regularly updated
counter. Since computations depending on a (global) state are encountered frequently,
it is natural to search for an elegant solution to this problem. In this case, the problem
served as motivation for introducing the State monad into Haskell. Another significant
problem is dealing with input and output, often denoted by I/O. How can asking for user
input be modeled as a pure function? After all, a function which simply returns the user’s
input is not pure, since the return value might change when calling the function multiple
times. Again, this problem was overcome with the help of monads; more precisely, by
defining the I/O monad.
Many more applications of monads in Haskell have since been discovered and implemented.
Consequently, monads form a vital part of the Haskell programming language.
Historically, Moggi was one of the first to realize that monads can be used in functional
programming languages to model computations. A key principle of his work on monads
was the distinction between ordinary functions and functions that perform computations.
He considered monads (T, µ, η) to be computational models, where the type T (A) was
interpreted as the object of computations of type A [Mog88, Def. 2.1]. Since he viewed
programs as functions from values to computations, the Kleisli category appeared to be
more suitable for the interpretation of programs than the original category. As a conse-
quence of this attitude, he worked with extension systems (which he called Kleisli triples).
Extension systems constitute an equivalent description of monads, as we will see in 5.2.
They were first defined by Manes in [Man76, Exercise 1.3.12, p.32].
The reason that Moggi preferred extension systems to conventional monads is that, while
the latter are more suitable for abstract manipulation, they are less convenient for describ-
ing computations, which was the application Moggi was interested in. Using extension
systems, Moggi was able to describe ideas like nondeterminism or side-effects [Mog91,
Exa. 1.4].
In [Wad92b; Wad92a], Wadler applied Moggi’s ideas to Haskell.

5.1 The Monad Type Class 33

In order to understand how monads can be applied to Haskell, we have to define extension
systems.

Definition 5.1. An extension system (or Kleisli triple) (T, η,−T) on a category C
consists of the following:

• For every object A ∈ C, there is an object T (A) ∈ C and a morphism η(A) : A →
T (A).

• For every morphism f : A → T (B) in C, there exists a morphism fT : T (A) → T (B).

For every object A,B,C ∈ C and all morphisms f : A → T (B), g : C → T (A) in C, it
must hold that

(η(A))T = idT (A)

and the diagrams

A T (A)

T (B),

η(A)

f fT

T (C) T (A)

T (B)

gT

(fT ◦g)T
fT

must commute.

The significance of extension systems lies in the following theorem, which tells us that an
extension system on a category is just a monad on that category and vice versa. This
connection served as motivation for Manes to introduce extension systems in [Man76].

Theorem 5.2. Let C be a category. Then there is a bijective correspondence between
the monads and the extension systems on C:
An extension system (T, η,−T) induces the monad (T, µ, η) as follows:

• T is transformed into an endofunctor C → C by defining T (f) = (η(B) ◦ f)T for a
morphism f : A → B in C.

• The multiplication µ : T 2 ⇒ T is defined to be µ(A) = (idT (A))
T .

On the other hand, a monad (T, µ, η) gives rise to the extension system (T, η,−T):

• T is restricted to its action on objects.

• −T is given by fT = µ(B) ◦ T (f) for a morphism f : A → T (B) in C.

Proof. Let (T, η,−T) be an extension system on C. Clearly, it holds T (idA) = (η(A))T =
idT (A) and for morphisms f : A → B, g : B → C in C, we observe

T (g) ◦ T (f) = (η(C) ◦ g)T ◦ (η(B) ◦ f)T

=
(
(η(C) ◦ g)T ◦ η(B) ◦ f

)T
= (η(C) ◦ g ◦ f)T = T (g ◦ f),

34 5 MONADS IN HASKELL

where we first utilized the second diagram, and then the first one.
µ is natural, because for any morphism f : A → B in C, it holds

µ(B) ◦ T 2(f) =
(
idT (B)

)T ◦
(
η(T (B)) ◦ (η(B) ◦ f)T

)T
=

((
idT (B)

)T ◦ η(T (B)) ◦ (η(B) ◦ f)T
)T

=
(
idT (B) ◦ (η(B) ◦ f)T

)T
=

(
(η(B) ◦ f)T ◦ idT (A)

)T
= (η(B) ◦ f)T ◦ (idT (A))

T = T (f) ◦ µ(A)

by the definition of an extension system. It is left to prove that the diagrams

T 3 T 2

T 2 T,

T•µ

µ•T µ

µ

T T 2 T

T

η•T

idT

T•η

µ
idT

commute. Indeed, for any object A ∈ C, it holds

µ(A) ◦ T (µ(A)) = (idT (A))
T ◦ (η(T (A)) ◦ µ(A))T

=
(
(idT (A))

T ◦ η(T (A)) ◦ (idT (A))
T
)T

=
(
idT (A) ◦ (idT (A))

T
)T

=
(
(idT (A))

T ◦ idT 2(A)

)T
= (idT (A))

T ◦ (idT 2(A))
T = µ(A) ◦ µ(T (A)),

so the first diagram commutes. The left triangle of the second diagram commutes by the
calculation

µ(A) ◦ η(T (A)) = (idT (A))
T ◦ η(T (A)) = idT (A)

and the commutativity of the right triangle follows analogously. We conclude that (T, µ, η)
is a monad.
On the other hand, let (T, µ, η) be a monad on C. Obviously, it holds (η(A))T =
µ(A) ◦T (η(A)) = idT (A). Moreover, the diagrams in the definition of an extension system
commute: Let f : A → T (B) and g : C → T (A) be morphisms in C. It holds

fT ◦ η(A) = µ(B) ◦ T (f) ◦ η(A) = µ(B) ◦ η(T (B)) ◦ f = f

by the naturality of η and the definition of a monad. Similarly, we see

fT ◦ gT = µ(B) ◦ T (f) ◦ µ(A) ◦ T (g) = µ(B) ◦ µ(T (B)) ◦ T 2(f) ◦ T (g)

= µ(B) ◦ T (µ(B)) ◦ T 2(f) ◦ T (g) = µ(B) ◦ T (fT ◦ g) =
(
fT ◦ g

)T
,

so (T, η,−T) is an extension system. It is clear that the two constructions are inverses to
one and another.

5.1 The Monad Type Class 35

The extension system (T, η,−T) of a monad (T, µ, η) permits a simple interpretation of
the composition in the Kleisli category CT ; that is, the composition of two morphism
f : A → T (B), g : B → T (C) in the Kleisli category is just gT ◦ f .
This observation entails a simple interpretation of the axioms of an extension system:
The equation (η(A))T = idT (A) means that the unit η is a left identity with respect to
Kleisli composition. Similarly, the diagrams

A T (A)

T (B),

η(A)

f fT

T (C) T (A)

T (B)

gT

(fT ◦g)T
fT

express that η is a right identity with respect to Kleisli composition and that Kleisli com-
position is associative.

After these theoretical observations, we draw the connection to Haskell. The extension
systems (i.e. the monads) are represented by the Monad type class. The relevant part of
that type class looks as follows:

class Applicative m => Monad m where

(>>=) :: m a -> (a -> m b) -> m b

return :: a -> m a

The first line states that every monad m is necessarily an instance of the Applicative type
class, which consists of applicative functors. Applicative functors were first introduced in
the paper [MP08] and are functors with extra structure; more precisely, their theoretical
equivalent in category theory are lax monoidal functors with tensorial strength.
It is not surprising that every instance of Applicative must also belong to the Functor
type class, so every instance of Monad is necessarily an instance Functor.
The other two lines state that every instance of Monad must define the functions >>=

(called bind) and return. Every instance should also satisfy the monad laws

• return a >>= k = k a

• m >>= return = m

• m >>= (\x -> k x >>= h) = (m >>= k) >>= h

for all5

k :: a -> m b, m :: m a, h :: b -> m c.

If we interpret return as the unit η and use the equation −(>>=)f = fT for >>=,
then the previous axioms translate to the following (using mathematical notation for the
application of a function to a value):

• kT (η(a)(a)) = k(a)

5It is common to denote Haskell values by the same name as their type and we adhere to that
convention.

36 5 MONADS IN HASKELL

• (η(a))T (m) = m

•
(
x 7→ hT (k(x))

)T
(m) = hT

(
kT (m)

)
.

These equations precisely correspond to those of an extension system on Hask .

If one prefers the conventional definition of a monad, one can use the join function, which
resembles the multiplication µ. Its definition

join :: (Monad m) => m (m a) -> m a

join x = x >>= id

states the type signature and provides a default implementation, whose correctness is an
immediate consequence of 5.2.

We mentioned that the Kleisli category plays an important role when modeling compu-
tations by monads. The Kleisli composition (left-to-right) is embodied by the function6

(>=>) :: Monad m => (a -> m b) -> (b -> m c) -> (a -> m c)

f >=> g = \x -> f x >>= g

The default implementation in the second line is motivated by our previous observation
that the Kleisli composition of f : A → T (B) and g : B → T (C) is given by gT ◦ f .

In summary, the monads in the Monad type class are the extension system on Hask . The
following table gives an overview on how notions from category theory translate to Haskell:

Category Theory Haskell

extension −T : A → T (B)⇝ T (A) → T (B) (>>=) :: m a -> (a -> m b) -> m b

unit η(A) : A → T (A) return :: a -> m a

multiplication µ(A) : T 2(A) → T (A) join :: m (m a) -> m a

Kleisli composition
(>=>) :: (a -> m b) ->

(b -> m c) -> (a -> m c)

Since monads are an integral part of Haskell, it is not surprising that many more functions
for working with monads have been defined. There even exists a special Haskell syntax,
called do-notation, in order to make working with monads in Haskell more convenient.
Since we are mainly interested in the theoretical uses of monads, this feature of the
language will not be covered here.
Instead, we turn our attention to concrete examples of monads in Haskell and rediscover
some familiar monads.

5.2 The List Monad

The purpose of the list monad is to represent nondeterministic computations. We already
saw that lists are functors in Haskell, where fmap = map. In fact, lists are also monads,
due to the following implementation:

6Alternatively, the function <=< can be used if one preferes right-to-left composition.

5.3 The Maybe Monad 37

instance Monad [] where

xs >>= f = [y | x <- xs, y <- f x]

return x = [x]

Here the second line defines >>= as follows: xs >>= f is defined to be the list compre-
hension [y | x <- xs, y <- f x]. This means that the resulting list consists of the
elements of f x, where x is drawn from the list xs. The third line establishes return for
the list monad: Given a value x, it returns the singleton list [x] consisting only of that
value.
Since a list is nothing but a formal word, this monad is just the free monoid monad from
3.2.3. Indeed, the units agree, and the concatenation µ(X) : [[X]] → [X] induces −T and
thus >>=: For f : A → T (B), it holds fT = µ(B) ◦ T (f) by 5.2, and this translates to

xs >>= f = fT (xs) = µ(B)([f x | x <- xs]) = [y | x <- xs, y <- f x].

We calculated the Eilenberg-Moore category of this monad in 3.7.3, it was just the cate-
gory of monoids Mon .

5.3 The Maybe Monad

In Haskell, Maybe is a type constructor that takes one type argument to produce a data
type. The values of the data type Maybe a are of the form Just a or Nothing, where
Nothing is a polymorphic value. For example, the values Just 0, Just 5, Nothing all
share the same type, namely Maybe Int. If we interpret a type a as a set A, then Maybe

a amounts to the set A ∪ {∗}, where ∗ is an arbitrary element not contained in A. This
element ∗ corresponds to the Nothing value.
Maybe becomes a functor by the following declaration:

instance Functor Maybe where

fmap _ Nothing = Nothing

fmap f (Just a) = Just (f a)

This means that given a function f :: a -> b, it is lifted to a function Maybe a ->

Maybe b as follows: If it gets a Nothing value, it returns Nothing. Otherwise, it applies
the function as in the third line. This functor might seem familiar to the reader. Indeed,
this is the endofunctor (−)+ from 3.2.1, translated to Haskell. In fact, the Maybe monad is
just the monad arising from the free-forgetful adjunction between Set and Set ∗, explained
in the same example. This is reflected in the monad declaration of Maybe:

instance Monad Maybe where

(Just x) >>= k = k x

Nothing >>= _ = Nothing

return x = Just x

In 3.7.1, we showed that the Eilenberg-Moore category of this monad is isomorphic to Set∗.
The Kleisli category of this monad is isomorphic to the category of sets with partially-
defined functions by 3.10.2.
This reveals the main use of the Maybe monad in functional programming: It is used to
compose functions that can fail. For example, we might write a function that calculates a

38 5 MONADS IN HASKELL

single real root of a given polynomial of degree 2. Then Maybe Float is a suitable return
type for our function, since there are polynomials of degree 2 that have no real roots. In
that case, the state of failure is represented by the Nothing value.

5.4 The Writer Monad

The Writer monad in Haskell corresponds to 3.5.1, which is a special case of the action
monad (see 3.3). Notice that this monad also arises from a suitable free-forgetful adjunc-
tion, as mentioned in 3.2.6. As in both examples, let M be a monoid.
Since the Haskell definition of Writer is rather complicated and in particular depends
on the definition of the more general WriterT type, we only sketch its use in Haskell:
When identifying Hask with a subcategory of Set , a Kleisli morphism of the writer monad
becomes a map X → Y × M . This can be interpreted as a process that not only com-
putes an element in Y (i.e. in Haskell terms a value of the corresponding type), but also
produces an element in M . For example, the monoid could be the data type String with
concatenation of strings as the multiplication of the monoid and the empty list as the
identity element. In that case, the Writer monad can be used to work with functions,
while “logging” information about the functions that are called [Per20, Exa. 5.1.14].
We calculated the Eilenberg-Moore category of this monad in 3.7.4, it turned out to be
isomorphic to the category MSet .

We covered three important monads in Haskell, but there are many more. For example,
there is the previously mentioned State monad or the Reader monad.
We finish our list of concrete monads in Haskell and conclude by looking at strong and
enriched monads and their connection to Haskell.

5.5 Strong and Enriched Monads

We saw the connection between the extension operation −T and Haskell’s bind operation
>>=, namely that −(>>=)f = fT . We now want to find an alternative description for
>>=. This requires some definitions.

Definition 5.3. A monoidal category (C,⊗, 1, α, λ, ρ) is called symmetric, if it can be
equipped with a natural transformation β(A,B) : A⊗B → B⊗A (called braiding), such
that for all objects A,B,C ∈ C, the diagram

(A⊗B)⊗ C A⊗ (B ⊗ C) (B ⊗ C)⊗ A

(B ⊗ A)⊗ C B ⊗ (A⊗ C) B ⊗ (C ⊗ A)

α(A,B,C)

β(A,B)⊗idC

β(A,B⊗C)

α(B,C,A)

α(B,A,C) idB⊗β(A,C)

commutes and that

β(B,A) ◦ β(A,B) = idA⊗B.

Definition 5.4. A symmetric monoidal category (C,⊗, 1, α, λ, ρ) is called closed, if for
every object B ∈ C, the functor −⊗B : C → C has a right adjoint functor [B,−] : C → C.

5.5 Strong and Enriched Monads 39

For two objects B,C ∈ C, the object [B,C] is called internal hom of B and C. We call
the counit eval(A,B) : [A,B]⊗ A → B evaluation.

One can show that a closed symmetric monoidal category allows the construction of a
functor [−,−] : Cop × C → C. This functor is similar to the well-known hom-functor
Cop × C → Set and is therefore called internal hom-functor.

Example 5.5. Every cartesian monoidal category (see 2.2.1) is symmetric. The main
reason for this is the essential uniqueness of the product. If a cartesian monoidal category
is additionally closed, it is called cartesian closed category.

We now introduce strong functors.

Definition 5.6. Let (C,⊗, 1, α, λ, ρ) be a monoidal category.
A strong functor (or a functor with tensorial strength) on C is an endofunctor
F : C → C, together with a natural transformation (called tensorial strength)

t(A,B) : A⊗ F (B) → F (A⊗B),

such that the diagrams

(A⊗B)⊗ F (C) F ((A⊗B)⊗ C)

A⊗ (B ⊗ F (C)) A⊗ F (B ⊗ C) F (A⊗ (B ⊗ C)),

α(A,B,F (C))

t(A⊗B,C)

F (α(A,B,C))

idA⊗t(B,C) t(A,B⊗C)

1⊗ F (A) F (1⊗ A)

F (A)

t(1,A)

λ(F (A))
F (λ(A))

commute for all objects A,B,C ∈ C.

Definition 5.7. A strong monad on a monoidal category (C,⊗, 1, α, λ, ρ) is a monad
(T, µ, η) together with a natural transformation

t(A,B) : A⊗ T (B) → T (A⊗B),

such that (T, t) is a strong functor and that the diagrams

A⊗B

A⊗ T (B) T (A⊗B)

idA⊗η(B)
η(A⊗B)

t(A,B)

40 5 MONADS IN HASKELL

A⊗ T 2(B) T (A⊗ T (B)) T 2(A⊗B)

A⊗ T (B) T (A⊗B)

t(A,T (B))

idA⊗µ(B)

T (t(A,B))

µ(A⊗B)

t(A,B)

commute.

The diagrams express the compatibility of the monad structure with the tensorial strength.
Next, we look at some notions from enriched category theory.

Definition 5.8. Let (V ,⊗, 1, α, λ, ρ) be a monoidal category. A (small) V-enriched
category (or V-category) C consists of

• a set of objects Ob(C) (called objects);

• for any two objects A,B ∈ C an object C(A,B) ∈ V (called hom-object);

• for any three objects A,B,C ∈ C a morphism ◦(A,B,C) : C(B,C) ⊗ C(A,B) →
C(A,C) in V (called composition morphism);

• for each object A ∈ C a morphism j(A) : 1 → C(A,A) (called identity).

Furthermore, for all objects A,B,C,D ∈ C, the following two diagrams must commute:

(C(C,D)⊗ C(B,C))⊗ C(A,B) C(C,D)⊗ (C(B,C)⊗ C(A,B))

C(B,D)⊗ C(A,B) C(A,D) C(C,D)⊗ C(A,C),

α

◦(B,C,D)⊗idC(A,B) idC(C,D)⊗◦(A,B,C)

◦(A,B,D) ◦(A,C,D)

C(B,B)⊗ C(A,B) C(A,B) C(A,B)⊗ C(A,A)

1⊗ C(A,B) C(A,B)⊗ 1.

◦(A,B,B) ◦(A,A,B)

j(B)⊗idC(A,B)
λ(C(A,B)) ρ(C(A,B))

idC(A,B)⊗j(A)

In the first diagram, α denotes the appropriate associator α(C(C,D), C(B,C), C(A,B)).

The diagrams are inspired by the axioms of an ordinary category: The first diagram
expresses that composition in C is associative, while the second states that j(A) acts as a
unit.

Example 5.9. 1. A (Set ,×)-enriched category just amounts to a locally small ordinary
category.

2. A (Cat ,×)-enriched category is a locally small strict 2-category. [Kel05, p.8].

Having defined enriched categories, it is only natural to next consider enriched functors.

5.5 Strong and Enriched Monads 41

Definition 5.10. Let C and D be two (V ,⊗, 1, α, λ, ρ)-enriched categories. A V-enriched
functor (or V-functor) F : C → D consists of a function

F : Ob(C) → Ob(D)

and for each pair A,B ∈ Ob(C) a morphism

F (A,B) : C(A,B) → D(F (A), F (B))

in V , such that the diagrams

C(B,C)⊗ C(A,B) C(A,C)

D(F (B), F (C))⊗D(F (A), F (B)) D(F (A), F (C)),

◦(A,B,C)

F (B,C)⊗F (A,B) F (A,C)

◦(F (A),F (B),F (C))

1

C(A,A) D(F (A), F (A))

j(A)
j(F (A))

F (A,A)

commute.

The commutativity of the two diagrams means that F preserves composition and units.

Example 5.11. 1. The (Set ,×)-enriched functors are just ordinary functors.

2. Any (Cat ,×)-enriched functor constitutes a 2-functor.

The following lemma shows that symmetric monoidal closed categories are always self-
enriched.

Lemma 5.12 ([Kel05, p.15]). Let (C,⊗, 1, α, λ, ρ) be a symmetric monoidal closed cate-
gory. Then a C-enriched category can be constructed as follows:

• The objects are those of C.

• The hom-object of two objects A,B ∈ C is given by [A,B].

• For three objects A,B,C ∈ C, the composition morphism corresponds to the com-
position

([B,C]⊗ [A,B])⊗ A [B,C]⊗ ([A,B]⊗ A) [B,C]⊗B Cα id⊗eval eval

under the tensor-hom adjunction.

• For an object A ∈ C, the identity corresponds to λ(A) : 1 ⊗ A → A under the
tensor-hom adjunction.

Proof. It is left to the reader to check that the necessary diagrams commute.

42 5 MONADS IN HASKELL

The reason for our interest in enriched category theory lies in the following theorem. It
is a special case of [Koc72, Thm. 1.3] and adapted from [NLab, 5].

Theorem 5.13. Let (C,⊗, 1, α, λ, ρ) be a symmetric monoidal closed category. There
exists a bijection between strong functors C → C and C-enriched functors C → C.

Proof. A C-enriched endofunctor C → C corresponds to a natural transformation

[A,B] → [T (A), T (B)]

making the diagrams in the definition of a V-enriched functor commute. By the tensor-
hom adjunction, such a map is equivalent to

t′(A,B) : [A,B]⊗ T (A) → T (B).

In the following two diagrams, we omit the arguments for the natural transformations. If
(T, t) is a strong endofunctor C → C, then we can define t′(A,B) to be

[A,B]⊗ T (A) T ([A,B]⊗ A) T (B).t T (eval)

On the other hand, a natural transformation (extranatural in A) t : [A,B]⊗T (A) → T (B),
induces a strength via

A⊗ T (B) [B,A⊗B]⊗ T (B) T (A⊗B),
η⊗idT (B) t′

where η denotes the unit of the tensor-hom adjunction.
It is not hard to check that these two constructions are indeed inverses to one and another.

Since every strong monad is in particular a strong endofunctor, it is not surprising that
the previous theorem can be improved to show a bijection between strong monads and
C-enriched monads. In particular, this holds if C is a cartesian closed category by 5.5.
In mathematical notation, (>>=) is a function T (A) → (A → T (B)) → T (B). By
currying, this is equivalent to a function ϕ(A,B) : (A → T (B)) → (T (A) → T (B)). This
looks very similar to the extension operation −T of an extension system, which assigns to
every morphism A → T (B) a morphism T (A) → T (B). Motivated by this, we make the
following ad-hoc definition:

Definition 5.14 (sketch). A strong extension system (T, η, ϕ) consists of the follow-
ing:

• For every object A ∈ C, there is an object T (A) ∈ C and a morphism η(A) : A →
T (A).

• For all objectsA,B ∈ C, there exists a morphism ϕ(A,B) : [A, T (B)] → [T (A), T (B)].

Furthermore, it must satisfy some suitable diagrams, similar to those of an extension
system.

5.5 Strong and Enriched Monads 43

We can now describe the equivalence between strong monads and strong extension sys-
tems, which is in analogy to the equivalence between monads and extension systems from
5.2.
Let C be a cartesian closed category. Given a strong monad (T, µ, η, t) on C, we define ϕ
via the composition

[A, T (B)] [T (A), T 2(B)] [T (A), T (B)],
[idT (A),µ(B)]

where the first arrow denotes the natural transformation given by the enrichment of T by
5.13.
On the other hand, a strong extension system (T, η, ϕ) gives rise to the following enrich-
ment for T :

[A,B] [A, T (B)] [T (A), T (B)].
[idA,η(B)] ϕ(A,B)

Applying this to the cartesian closed category Hask , we get a description of monads that
closely resembles the type class Monad with its functions return and >>=. In particular,
all monads represented by the Monad type class are strong.

44 REFERENCES

References

[AHS04] Jǐŕı Adámek, Horst Herrlich, and George E. Strecker. Abstract and Con-
crete Categories. The Joy of Cats. Citeseer, 2004.

[Awo10] Steve Awodey. Category Theory. 2nd ed. Oxford Logic Guides 52. Oxford
; New York: Oxford University Press, 2010. isbn: 978-0-19-958736-0 978-
0-19-923718-0.

[BJK05] Francis Borceux, George Janelidze, and Gregory Maxwell Kelly. “Internal
Object Actions”. In: Commentationes Mathematicae Universitatis Caroli-
nae 46.2 (2005), pp. 235–255.

[BJT97] Hans-Joachim Baues, Mamuka Jibladze, and Andy Tonks. “Cohomology
of Monoids in Monoidal Categories”. In: Contemporary Mathematics 202
(1997), pp. 137–166.

[Bra14] Martin Brandenburg. “Tensor Categorical Foundations of Algebraic Ge-
ometry”. In: arXiv:1410.1716 [math] (Oct. 2014). arXiv: 1410.1716 [math].

[Bra17] Martin Brandenburg. Einführung in die Kategorientheorie: Mit ausführlichen
Erklärungen und zahlreichen Beispielen. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2017. isbn: 978-3-662-53520-2 978-3-662-53521-9. url: http:
//link.springer.com/10.1007/978- 3- 662- 53521- 9 (visited on
10/01/2020).

[BW00] Michael Barr and Charles Wells. Toposes, Triples, and Theories. Springer-
Verlag, 2000.

[CJ11] Dion Coumans and Bart Jacobs. “Scalars, Monads, and Categories”. In:
arXiv:1003.0585 [math] (Nov. 2011). arXiv: 1003.0585 [math].

[EK66] Samuel Eilenberg and G. Max Kelly. “Closed Categories”. In: Proceedings
of the Conference on Categorical Algebra. Ed. by S. Eilenberg et al. Berlin,
Heidelberg: Springer Berlin Heidelberg, 1966, pp. 421–562. isbn: 978-3-
642-99904-8 978-3-642-99902-4. url: http://link.springer.com/10.
1007/978-3-642-99902-4_22 (visited on 10/01/2020).

[EM01] M. Mehdi Ebrahimi and Mojgan Mahmoudi. “The Category of M-Sets”.
In: Italian journal of pure and applied mathematics (2001), pp. 123–132.

[EM65] Samuel Eilenberg and John C. Moore. “Adjoint Functors and Triples”. In:
Illinois Journal of Mathematics 9.3 (1965), pp. 381–398.

[GS90] Carl A. Gunter and Dana S. Scott. “Semantic Domains”. In: Formal Mod-
els and Semantics. Elsevier, 1990, pp. 633–674.

[HaskellWiki] HaskellWiki. Hask - HaskellWiki. url: https://wiki.haskell.org/
index.php?title=Hask%5C&oldid=52908 (visited on 10/07/2020).

[HF92] Paul Hudak and Joseph H. Fasel. “A Gentle Introduction to Haskell”. In:
ACM Sigplan Notices 27.5 (1992), pp. 1–52.

https://arxiv.org/abs/1410.1716
http://link.springer.com/10.1007/978-3-662-53521-9
http://link.springer.com/10.1007/978-3-662-53521-9
https://arxiv.org/abs/1003.0585
http://link.springer.com/10.1007/978-3-642-99902-4_22
http://link.springer.com/10.1007/978-3-642-99902-4_22
https://wiki.haskell.org/index.php?title=Hask%5C&oldid=52908
https://wiki.haskell.org/index.php?title=Hask%5C&oldid=52908

REFERENCES 45

[Hub61] Peter J. Huber. “Homotopy Theory in General Categories”. In: Mathe-
matische Annalen 144.5 (Oct. 1961), pp. 361–385. issn: 0025-5831, 1432-
1807. url: http://link.springer.com/10.1007/BF01396534 (visited
on 10/01/2020).

[Hud+07] Paul Hudak et al. “A History of Haskell: Being Lazy with Class”. In:
Proceedings of the Third ACM SIGPLAN Conference on History of Pro-
gramming Languages. 2007, pp. 1–55.

[Hud89] Paul Hudak. “Conception, Evolution, and Application of Functional Pro-
gramming Languages”. In: ACM Computing Surveys 21.3 (Sept. 1989),
pp. 359–411. issn: 0360-0300, 1557-7341. url: https://dl.acm.org/
doi/10.1145/72551.72554 (visited on 10/01/2020).

[Hug89] John Hughes. “Why Functional Programming Matters”. In: The computer
journal 32.2 (1989), pp. 98–107.

[Jon95] Mark P. Jones. “Functional Programming with Overloading and Higher-
Order Polymorphism”. In: Advanced Functional Programming. Ed. by
Gerhard Goos et al. Vol. 925. Berlin, Heidelberg: Springer Berlin Heidel-
berg, 1995, pp. 97–136. isbn: 978-3-540-59451-2 978-3-540-49270-2. url:
http://link.springer.com/10.1007/3-540-59451-5_4 (visited on
10/01/2020).

[Kel05] G. M. Kelly. “Basic Concepts of Enriched Category Theory”. In: Reprints
in Theory and Applications of Categories 10 (2005), pp. vi+137. url:
https://mathscinet.ams.org/mathscinet- getitem?mr=2177301

(visited on 10/13/2020).

[Kle65] Heinrich Kleisli. “Every Standard Construction Is Induced by a Pair of
Adjoint Functors”. In: Proceedings of the American Mathematical Society
16.3 (1965), pp. 544–546.

[Kna06] AnthonyW. Knapp. Basic Algebra. Cornerstones. Boston, MA: Birkhäuser
Boston, 2006. isbn: 978-0-8176-3248-9 978-0-8176-4529-8. url: http :

//link.springer.com/10.1007/978- 0- 8176- 4529- 8 (visited on
09/28/2020).

[Koc72] Anders Kock. “Strong Functors and Monoidal Monads”. In: Archiv der
Mathematik 23.1 (1972), pp. 113–120.

[Lan02] Serge Lang. Algebra. Ed. by S. Axler, F. W. Gehring, and K. A. Ri-
bet. Vol. 211. Graduate Texts in Mathematics. New York, NY: Springer
New York, 2002. isbn: 978-1-4612-6551-1 978-1-4613-0041-0. url: http:
//link.springer.com/10.1007/978- 1- 4613- 0041- 0 (visited on
10/01/2020).

[Law06] F. William Lawvere. “Adjointness in Foundations with the Author’s Com-
mentary”. In: Reprints in Theory and Applications of Categories 16 (2006),
pp. 1–16.

[Lip11] Miran Lipovača. Learn You a Haskell for Great Good! no starch press,
2011. isbn: 978-1-59327-283-8.

http://link.springer.com/10.1007/BF01396534
https://dl.acm.org/doi/10.1145/72551.72554
https://dl.acm.org/doi/10.1145/72551.72554
http://link.springer.com/10.1007/3-540-59451-5_4
https://mathscinet.ams.org/mathscinet-getitem?mr=2177301
http://link.springer.com/10.1007/978-0-8176-4529-8
http://link.springer.com/10.1007/978-0-8176-4529-8
http://link.springer.com/10.1007/978-1-4613-0041-0
http://link.springer.com/10.1007/978-1-4613-0041-0

46 REFERENCES

[LS88] Joachim Lambek and Philip J. Scott. Introduction to Higher-Order Cate-
gorical Logic. Vol. 7. Cambridge University Press, 1988.

[Mac63] Saunders Mac Lane. “Natural Associativity and Commutativity”. In: Rice
Institute Pamphlet-Rice University Studies 49.4 (1963).

[Mac65] Saunders MacLane. “Categorical Algebra”. In: Bulletin of the American
Mathematical Society 71.1 (1965), pp. 40–106.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. Vol. 5.
Springer Science & Business Media, 1998.

[Man76] Ernest G. Manes. Algebraic Theories. Ed. by P. R. Halmos. Vol. 26. Gradu-
ate Texts in Mathematics. New York, NY: Springer New York, 1976. isbn:
978-1-4612-9862-5 978-1-4612-9860-1. url: http://link.springer.com/
10.1007/978-1-4612-9860-1 (visited on 10/08/2020).

[Mar10] Simon Marlow.Haskell 2010 Language Report. Tech. rep. 2010. url: https:
//www.haskell.org/onlinereport/haskell2010 (visited on 10/01/2020).

[Mog88] Eugenio Moggi. Computational Lambda-Calculus and Monads. Tech. rep.
University of Edinburgh, Department of Computer Science, 1988.

[Mog91] Eugenio Moggi. “Notions of Computation and Monads”. In: Information
and computation 93.1 (1991), pp. 55–92.

[MP08] Conor McBride and Ross Paterson. “Applicative Programming with Ef-
fects”. In: Journal of functional programming 18.1 (2008), pp. 1–13.

[NLab] Strong Monad - nLab. url: https://ncatlab.org/nlab/show/strong+
monad (visited on 10/13/2020).

[Per20] Paolo Perrone. “Notes on Category Theory with Examples from Basic
Mathematics”. In: arXiv:1912.10642 [cs, math] (Aug. 2020). arXiv: 1912.
10642 [cs, math].

[Rie17] Emily Riehl. Category Theory in Context. Courier Dover Publications,
2017.

[RJ14] Exequiel Rivas and Mauro Jaskelioff. “Notions of Computation as Monoids”.
In: arXiv:1406.4823 [cs, math] (May 2014). arXiv: 1406.4823 [cs, math].

[Sea13] Gavin J. Seal. “Tensors, Monads and Actions”. In: arXiv:1205.0101 [math]
(June 2013). arXiv: 1205.0101 [math].

[Wad92a] Philip Wadler. “Comprehending Monads”. In: Mathematical Structures in
Computer Science 2 (1992), pp. 461–493.

[Wad92b] Philip Wadler. “The Essence of Functional Programming”. In: Proceed-
ings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. 1992, pp. 1–14.

[WB89] Philip Wadler and Stephen Blott. “How to Make Ad-Hoc Polymorphism
Less Ad Hoc”. In: Proceedings of the 16th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. 1989, pp. 60–76.

http://link.springer.com/10.1007/978-1-4612-9860-1
http://link.springer.com/10.1007/978-1-4612-9860-1
https://www.haskell.org/onlinereport/haskell2010
https://www.haskell.org/onlinereport/haskell2010
https://ncatlab.org/nlab/show/strong+monad
https://ncatlab.org/nlab/show/strong+monad
https://arxiv.org/abs/1912.10642
https://arxiv.org/abs/1912.10642
https://arxiv.org/abs/1406.4823
https://arxiv.org/abs/1205.0101

REFERENCES 47

[Wikibook] Wikibooks.Haskell/Category Theory - Wikibooks, The Free Textbook Project.
url: https://en.wikibooks.org/w/index.php?title=Haskell/
Category_theory%5C&oldid=3580981 (visited on 10/01/2020).

https://en.wikibooks.org/w/index.php?title=Haskell/Category_theory%5C&oldid=3580981
https://en.wikibooks.org/w/index.php?title=Haskell/Category_theory%5C&oldid=3580981

	Introduction
	Monads as Monoids in the Category of Endofunctors
	Monoidal Categories
	Monoids in Monoidal Categories
	Definition of Monads and First Examples

	Constructions with Monads
	Monads from Adjunctions
	The Action Monad
	The Eilenberg-Moore Category
	The Kleisli Category

	Category Theory in Haskell
	Haskell as a Functional Programming Language
	A Brief Introduction to Haskell
	The Category Hask
	The Functor Type Class

	Monads in Haskell
	The Monad Type Class
	The List Monad
	The Maybe Monad
	The Writer Monad
	Strong and Enriched Monads

