8 APPENDIX: AN IMPLEMENTATION IN JULIA 15

8 Appendix: An Implementation in Julia

In this appendix, we want to highlight a quick implementation of the iRB operator in
the programming language Julia. This implementation has been used to generate all the
images within the main text. [

We first import the Plots package for plotting and the QuadGK package for numerical
integration.

using Plots
using QuadGK

We may then implement a function that computes the RB operator for given parameter
functions.

function compute_irb_operator (hit_times,inv_1,q,s)
function T(f)
function Tf(x)
(1,u) = hit_times(x)
return first(quadgk(t -> q(t,inv_1(x)(t)), 1, w)) +
first(quadgk(t -> s(t,inv_1(x)(t)) * f(inv_1(x)(t)), 1, w))
end
return Tf
end
return T
end

The parameter hit_times is a function taking x € X and returning the z-hit times
T, = {te[l,n]:z € X;}. For simplicity, we assume that 7} is an interval for every
x € X; represented as a pair (1,b), where 1 is the lower bound of the interval and b is
the upper one. The parameter inv_1 returns for given x € X the function ¢ — lfl(as).
The function q requires ¢t € [1,n] and x € X and returns a value in F. Similarly, s
produces a real number for given ¢ € [1,n] and x € X.

The function compute_irb_operator returns the function T which takes an f and returns
another function Tf that computes for given z the value T'(f)(z) using (3).

It is then straightforward to iterate this function n times, starting with the given function
start.

function iterate_irb_operator(hit_times,inv_1,q,s,start,n)
T = compute_irb_operator(hit_times,inv_1,q,s)
fs = Anyl[start]
for i in 1:n
push! (fs,T(last(fs)))
end
return fs[2:end]
end

L A slight variation of the function has been used to plot the discontinuous examples in order to improve
their visual appearance.

8 APPENDIX: AN IMPLEMENTATION IN JULIA 16

The return value of iterate_irb_operator is the list [I'(start), T'(T'(start)),...].

Finally, we define a function to plot the resulting iterates. Its arguments are the same as
before, except for the additional parameter boundaries, which is a pair representing the
interval of z-values plotted in the graph.

function plot_approximations(hit_times,inv_1,q,s,start,n,boundaries)
fs = iterate_irb_operator(hit_times,inv_1,q,s,start,n)
p = plot(fs[1], xlims = boundaries, legend=false)
for i in 2:length(fs)
plot! (fs[i])
end
return p
end

To demonstrate the usage of these functions, we explain how to plot the iRB operator
constructed in We first have to compute the z-hit times for every z € X.
In general, if h: [0,1] — [0,1] is strictly monotonically increasing and continuous, then

the z-hit time T, = {t € [1,2] : z € X;} is an interval, because

teTl, <= §L(0)<z<I[(1)

—_

PN %h(t_ [t]) Sz < SA+ht = 11))

— te€ [inf}{2x — 1< h(t—|t])}, sup {h(t — |t]) <2z},

tefl,2 tef1,2)

where the last step uses the continuity of h. In the special case h = idjg ;) considered in
the example, we obtain

1,2z +1] =<

TI:[2x72x+1]ﬂ[1’2]:{[2$ 9] T >

N M=

Therefore, in Julia we define

function hit_times(x)
if x <= 1/2
return (1,2x*x+1)
else
return (2*x,2)
end
end
function inv_1(x)
return t > 2 *x x -t + 1
end

and then we can generate as follows:

plot_approximations(hit_times, inv_1l, (t,x) -> 2*xx*(t-1),
(t,x) —> 1/2xx*x(t-1), x -> 0, 3, (0,1))

8 APPENDIX: AN IMPLEMENTATION IN JULIA 17

Similarly, replacing I, by the injective function
. 1,
ly: [0,1] — [0, 1], x|—>1—§x
yields the extension (for h = idy 1))

1 1
I(t,z) = —§(t—1)-x2+§(2—t)-x+t—1.
In this case, the quadratic polynomial /; is not injective if and only if its maximum lies
in the interval (0,1), which turns out to be the case for ¢ € (3,1).
This shows that it need not be the case that [; is injective for almost all ¢, even though
all [; are injective.

In other words, fori € {2,...,n—1} and t € [i — %,i—i— %), I, is equal to [;. Furthermore,
ly is equal to [if t € [1, %) and to I, fort € [n— 1,n]. Notice that the situation is slightly
asymmetrical because [agrees with the ; for i € {2,...,n =1} on an interval of length
1 (after projecting onto the first component), whereas [is equal to l; or [, only on an
interval of length %

Applying the above construction (with respect to h(*)) to l~,-, ¢; and §; (and again replacing
1 by 2-q, and similarly for §,, §; and 3,) yields a sequence of functions [¥), ¢*) and s,
However, two subtleties arise in this context. On the one hand, we need to assume that
X is convex in order for {®) to be a function [1,n] x X — X (instead of having codomain
E), which is the setting we are interested in (see Section 2). On the other hand, we need
to ensure that the extensions [(*) have the property that for every k > 2, l,gk) is injective
for almost all £ € [1,n]. This is guaranteed if the set

{t €10,1) - (1= 1) I;+1t- ;41 not injective}

is a null set for all j € IN,,_;.
Hence, for every k > 2, we may construct a corresponding iRB operator 7" : Z — Z.

By [Lemma 3.2 all 7") are induced by continuous [*), ¢ and s®*).

Hence, in order for 1y, to be continuous at x € X for almost all ¢t € [1, n|, we must require
that this set is a null set for every xz € X.

The second integrand z + (s, 01, ") (x) - (f o I, ') (x)1x,(x) is continuous at z € X for
almost all ¢ € [1,n] if additionally I,”': X; = X and s,0l,”": X, — R are continuous for
almost all t € [1,n].

