
8 APPENDIX: AN IMPLEMENTATION IN JULIA 15

8 Appendix: An Implementation in Julia

In this appendix, we want to highlight a quick implementation of the iRB operator in
the programming language Julia. This implementation has been used to generate all the
images within the main text. 1

We first import the Plots package for plotting and the QuadGK package for numerical
integration.

using Plots

using QuadGK

We may then implement a function that computes the RB operator for given parameter
functions.

function compute_irb_operator(hit_times,inv_l,q,s)

function T(f)

function Tf(x)

(l,u) = hit_times(x)

return first(quadgk(t -> q(t,inv_l(x)(t)), l, u)) +

first(quadgk(t -> s(t,inv_l(x)(t)) * f(inv_l(x)(t)), l, u))

end

return Tf

end

return T

end

The parameter hit times is a function taking x ∈ X and returning the x-hit times
Tx = {t ∈ [1, n] : x ∈ Xt}. For simplicity, we assume that Tx is an interval for every
x ∈ X; represented as a pair (l,b), where l is the lower bound of the interval and b is
the upper one. The parameter inv l returns for given x ∈ X the function t 7→ lt

−1(x).
The function q requires t ∈ [1, n] and x ∈ X and returns a value in F . Similarly, s
produces a real number for given t ∈ [1, n] and x ∈ X.
The function compute irb operator returns the function T which takes an f and returns
another function Tf that computes for given x the value T (f)(x) using (3).
It is then straightforward to iterate this function n times, starting with the given function
start.

function iterate_irb_operator(hit_times,inv_l,q,s,start,n)

T = compute_irb_operator(hit_times,inv_l,q,s)

fs = Any[start]

for i in 1:n

push!(fs,T(last(fs)))

end

return fs[2:end]

end

1A slight variation of the function has been used to plot the discontinuous examples in order to improve
their visual appearance.



8 APPENDIX: AN IMPLEMENTATION IN JULIA 16

The return value of iterate irb operator is the list [T (start), T (T (start)), . . . ].

Finally, we define a function to plot the resulting iterates. Its arguments are the same as
before, except for the additional parameter boundaries, which is a pair representing the
interval of x-values plotted in the graph.

function plot_approximations(hit_times,inv_l,q,s,start,n,boundaries)

fs = iterate_irb_operator(hit_times,inv_l,q,s,start,n)

p = plot(fs[1], xlims = boundaries, legend=false)

for i in 2:length(fs)

plot!(fs[i])

end

return p

end

To demonstrate the usage of these functions, we explain how to plot the iRB operator
constructed in Example 4.4. We first have to compute the x-hit times for every x ∈ X.
In general, if h : [0, 1] → [0, 1] is strictly monotonically increasing and continuous, then
the x-hit time Tx = {t ∈ [1, 2] : x ∈ Xt} is an interval, because

t ∈ Tx ⇐⇒ lt(0) ≤ x ≤ lt(1)

⇐⇒ 1

2
h(t− ⌊t⌋) ≤ x ≤ 1

2
(1 + h(t− ⌊t⌋))

⇐⇒ t ∈

[
inf

t∈[1,2]
{2x− 1 ≤ h(t− ⌊t⌋)}, sup

t∈[1,2]
{h(t− ⌊t⌋) ≤ 2x}

]
,

where the last step uses the continuity of h. In the special case h = id[0,1] considered in
the example, we obtain

Tx = [2x, 2x+ 1] ∩ [1, 2] =

{
[1, 2x+ 1] x ≤ 1

2

[2x, 2] x > 1
2

.

Therefore, in Julia we define

function hit_times(x)

if x <= 1/2

return (1,2*x+1)

else

return (2*x,2)

end

end

function inv_l(x)

return t -> 2 * x - t + 1

end

and then we can generate Fig. 2 as follows:

plot_approximations(hit_times, inv_l, (t,x) -> 2*x*(t-1),

(t,x) -> 1/2*x*(t-1), x -> 0, 3, (0,1))



8 APPENDIX: AN IMPLEMENTATION IN JULIA 17

Similarly, replacing l̃2 by the injective function

l̃2 : [0, 1] → [0, 1], x 7→ 1− 1

2
x2

yields the extension (for h = id[0,1])

l(t, x) = −1

2
(t− 1) · x2 + 1

2
(2− t) · x+ t− 1.

In this case, the quadratic polynomial lt is not injective if and only if its maximum lies
in the interval (0, 1), which turns out to be the case for t ∈ (1

3
, 1).

This shows that it need not be the case that lt is injective for almost all t, even though
all l̃i are injective.

In other words, for i ∈ {2, . . . , n− 1} and t ∈ [i− 1
2
, i+ 1

2
), lt is equal to l̃i. Furthermore,

lt is equal to l̃1 if t ∈ [1, 3
2
) and to l̃n for t ∈ [n− 1

2
, n]. Notice that the situation is slightly

asymmetrical because l agrees with the l̃i for i ∈ {2, . . . , n− 1} on an interval of length
1 (after projecting onto the first component), whereas l is equal to l̃1 or l̃n only on an
interval of length 1

2
.

Applying the above construction (with respect to h(k)) to l̃i, q̃i and s̃i (and again replacing
q̃1 by 2 · q̃1 and similarly for q̃n, s̃1 and s̃n) yields a sequence of functions l(k), q(k) and s(k).
However, two subtleties arise in this context. On the one hand, we need to assume that
X is convex in order for l(k) to be a function [1, n]×X → X (instead of having codomain
E), which is the setting we are interested in (see Section 2). On the other hand, we need

to ensure that the extensions l(k) have the property that for every k ≥ 2, l
(k)
t is injective

for almost all t ∈ [1, n]. This is guaranteed if the set{
t ∈ [0, 1] : (1− t) · l̃j + t · l̃j+1 not injective

}
is a null set for all j ∈ Nn−1.
Hence, for every k ≥ 2, we may construct a corresponding iRB operator T (k) : Z → Z.
By Lemma 3.2, all T (k) are induced by continuous l(k), q(k) and s(k).

Hence, in order for 1Xt to be continuous at x ∈ X for almost all t ∈ [1, n], we must require
that this set is a null set for every x ∈ X.
The second integrand x 7→ (st ◦ lt−1)(x) · (f ◦ lt−1)(x)1Xt(x) is continuous at x ∈ X for
almost all t ∈ [1, n] if additionally lt

−1 : Xt → X and st ◦ lt−1 : Xt → R are continuous for
almost all t ∈ [1, n].


