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1 INTRODUCTION 1

1 Introduction

It is tempting to hope that the world around us can be modeled using simple shapes
from Euclidean geometry like lines, circles, cubes etc. In many ways, Euclidean geometry
can be seen as an “idealized” version of the world that is mathematically easier to work
with. However, the vast majority of objects around us do not seem to permit a simple
description in terms of Euclidean geometry but instead appear to be highly irregular. As
Benoit B. Mandelbrot noted in [Man82]:

“Clouds are not spheres, mountains are not cones, coastlines are not circles,
and bark is not smooth, nor does lightning travel in a straight line.”

Observations like these called for a new form of geometry, which would study objects of
irregular shape. The resulting branch of mathematics is called fractal geometry.
As the name suggests, the central notion of this form of geometry is that of a fractal.
Roughly, a fractal can be characterized as a geometric object, which when magnified
reveals a similar structure as it had before. It will be our first task to make this notion of
self-similarity precise. The main tool used for this are iterated function systems. In section
2.2, we state and proof Hutchinson’s Existence Theorem, which constitutes a central pillar
of our considerations. It not only guarantees the existence of many fractals, but it also
supplies us with a rather simple algorithm that can be used to simulate any fractal given
by an iterated function system. In the following subsection, we implement this algorithm
in the programming language Julia. Section 2.4 can be regarded as a highlight of this
paper: There we put our algorithm to work and derive images of a variety of popular
and visually pleasing fractals. The algorithm also makes it easy to create and plot new
fractals, which we demonstrate by an example.
In the next chapter, we study fractals that are not self-similar in the sense of Chapter
2, but instead permit a form of statistical self-similarity. Our focus lies on Brownian
motion (also called Wiener process) and its generalization fractional Brownian motion.
We provide a way to simulate Brownian motion as a limit of a random walk and we
also describe and implement an algorithm that allows us to simulate fractional Brownian
motion.
This text provides a short tour through the fascinating world of fractals and it is my hope
that the various visualizations will delight the reader just as much as they delighted me.
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2 Fractals as self-similar or self-affine Sets

2.1 Definition of Fractals

Many well-behaved objects as studied in Euclidean geometry lose structure and thus
become easier to understand the more one “zooms in”. For example, when magnified, a
smooth curve looks more and more like its tangent. Furthermore, a large part of research
in modern geometry is dedicated to manifolds, objects which are precisely defined by the
fact that they are locally similar (homeomorphic) to Euclidean space Rn. In contrast,
fractals exhibit a fine structure, such that magnifying them reveals the same (or similar)
structure.
In order to make this idea into a mathematical definition, one has to specify what is
meant with “similar”. There are many ways to make this precise and as fractal ge-
ometry attempts to describe a large class of phenomena appearing in reality, no single
all-encompassing definition can be given.
For the purpose of specifying the forms of similarities we want to allow, it is convenient
to fix some terminology.

Definition 2.1. Let (X, d), (Y, d) be two metric spaces and f : X → Y a function.

(a) f is called contraction, if it is Libschitz continuous with Libschitz constant L ∈
(0, 1); i.e. if

d(f(x), f(y)) ≤ L · d(x, y) ∀x, y ∈ X.

(b) f is called similarity transformation, if there exists L > 0, such that

d(f(x), f(y)) = L · d(x, y) ∀x, y ∈ X.

(c) We now restrict to the case that X, Y ⊂ Rn are two subsets of Rn, equipped with
the usual Euclidean metric. f is called affine transformation, if it is of the form
f(x) = g(x) + b with g a linear transformation and b a constant.

It is clear that all of these classes of functions are continuous.
We follow the terminology from [Fal14, Chapter 9].

Definition 2.2. Let (X, d) be a metric space. An iterated function system is a finite
family of contractions {fi : 1 ≤ i ≤ m}, fi : X → X. The corresponding Hutchinson
operator is the function

H : P(X) → P(X), S 7→
m⋃
i=1

fi(S).

We are mostly interested in the case that X ⊂ Rn is equipped with the Euclidean metric
and we will only define fractals as subsets of Rn, because this is the most significant case
in practice.

Definition 2.3. Let A ⊂ X ⊂ Rn. The set A is invariant with respect to an iterated
function system {fi : 1 ≤ i ≤ m}, fi : X → X, if we have H(A) = A for the Hutchinson
operator H.
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Definition 2.4. A set A ⊂ Rn is self-similar, if it is invariant under an iterated function
system consisting of similarity transformations. It is called self-affine, if it is invariant
under an iterated function system consisting of affine transformations.

As mentioned, fractal geometry attempts to describe a large variety of irregular shapes
that appear in reality. Due to this aspired generality, an all-encompassing definition
of fractals cannot be given. In this chapter, we characterize fractals by the following
property.

Definition 2.5. We call a set F ⊂ Rn a fractal, if (but not only if) it is self-affine or
self-similar.

2.2 Hutchinson’s Existence Theorem

A natural question that arises is whether an iterated function system {fi : 1 ≤ i ≤ m}
necessarily permits an invariant set and whether such an invariant set is unique. Perhaps
surprisingly, this is indeed the case if the domain X of the fi is closed. This is a key result
from Hutchinson in [Hut81, 3.1].

Theorem 2.6 (Hutchinson’s Existence Theorem). Let X ⊂ Rn be closed and
{fi : 1 ≤ i ≤ m}, fi : X → X an iterated function system with Hutchinson operator H.
The system has a unique invariant set F , which is nonempty and compact.
Additionally, for any nonempty compact set A ⊂ X with H(A) ⊂ A, it applies F =⋂∞

n=0H
n(A).

Our next goal is to prove this theorem, which turns out to be rather difficult. We first
recall the Hausdorff metric, originally introduced by Felix Hausdorff in 1914.

Definition 2.7. Let (X, d) be a metric space and C ⊂ P(X) the set of nonempty compact
subsets of X. The Hausdorff metric is a metric on C, given by

dH : C × C → R, (A,B) 7→ max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
.

Intuitively, two nonempty compact sets are close to each other with respect to the Haus-
dorff metric, if any point in either of the two sets is close to another point from the other
set.
The following lemma is an important ingredient for the proof of Theorem 2.6.

Lemma 2.8 ([Hut81, 3.2]). Let (X, d) be a metric space and {fi : 1 ≤ i ≤ m}, fi : X →
X an iterated function system with Hutchinson operator H. Then the restriction H :
(C, dH) → (C, dH) is a contraction.

Proof. Let Li ∈ (0, 1), 1 ≤ i ≤ m be the Libschitz constants of the fi and A,B ∈ C
nonempty compact sets.
For a ∈ A and 1 ≤ j ≤ m, we have for any b ∈ B

d

(
fj(a),

m⋃
i=1

fi(B)

)
= inf

i∈{1,...,m}, x∈B
d(fj(a), fi(x)) ≤ d(fj(a), fj(b)),
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so

sup
a∈A

d

(
fj(a),

m⋃
i=1

fi(B)

)
≤ sup

a∈A
inf
b∈B

d(fj(a), fj(b)) = sup
a∈A

d(fj(a), fj(B)).

By symmetry, we also have

sup
b∈B

d

(
m⋃
i=1

fi(A), fj(b)

)
≤ sup

b∈B
d(fj(A), fj(b)),

and together, this implies

dH

(
m⋃
i=1

fi(A),
m⋃
i=1

fi(B)

)
≤ max

1≤i≤m
dH(fi(A), fi(B)).

Thus the claim follows by the calculation

dH(H(A), H(B)) = dH

(
m⋃
i=1

fi(A),
m⋃
i=1

fi(B)

)
≤ max

1≤i≤m
dH(fi(A), fi(B))

≤
(
max
1≤i≤m

Li

)
· dH(A,B).

The Hausdorff metric can even be defined on the set of all nonempty closed bounded
subsets B, in which case the following statement applies.

Lemma 2.9 ([Mun13, Cha. 45, Exercise 7]). Let (X, d) be a complete metric space
and B the set of all nonempty closed bounded subsets of X. Then (B, dH) is a complete
metric space.

Proof. Let (An)n∈N be a Cauchy sequence in (B, dH). By choosing a subsequence, we may
assume that dH(An, An+1) <

1
2n

for all n ∈ N. We define L ⊂ X to be the set of limits of
sequences (xn)n∈N with xn ∈ An and d(xn, xn+1) <

1
2n

for all n ∈ N.
The existence of such sequences is guaranteed because dH(An, An+1) <

1
2n

and the corre-
sponding limit point must exist since (xn) is a Cauchy sequence and (X, d) is complete.
Having established that L is nonempty, we prove that L is bounded. Indeed, for x ∈ L,
there exists a sequence (xn)n∈N with xn → x satisfying the properties stated above. The
same holds for y ∈ L and a sequence yn → y. Since xn → x and yn → y, there exists
n ∈ N, such that d(xn, x) < 1 and d(yn, y) < 1. Denoting the diameter of An by r < ∞,
this implies

d(x, y) ≤ d(x, xn) + d(xn, yn) + d(yn, y)

< 1 + d(xn, yn) + 1

≤ r + 2,
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so L is bounded. If a set in a metric space is bounded, the same holds true for its closure,
so we have L ∈ B by the above.
We finish the proof by showing that An → L. To that end, let ϵ > 0.
We have to show that there exists N ∈ N, such that for all z ∈ L and a ∈ An

d(z, An) < ϵ ∧ d(L, a) < ϵ ∀n ≥ N. (∗)

Because z ∈ L, there is x ∈ L with d(z, x) < ϵ
2
and a sequence (xn)n∈N satisfying xn → x

and xn ∈ An. Hence there is M ∈ N, such that d(xn, x) <
ϵ
2
for all n ≥ M . We conclude

d(z, An) ≤ d(z, xn) ≤ d(z, x) + d(x, xn) < ϵ ∀n ≥ M.

To prove the second part of (∗), we choose M ′ ∈ N large enough, so that 1
2M′−1 < ϵ. We

claim that for any n ≥ M ′ and a ∈ An, we can find x ∈ L satisfying d(x, a) < ϵ.
To see this, we define a sequence (xn)n∈N as follows. Set xn = a and iteratively choose
xn+k ∈ An+k, such that d(xn+k−1, xn+k) <

1
2n+k−1 for all k > 0. Those xn+k must exist,

because dH(Ai, Ai+1) < 1
2i

for all i ∈ N. Similarly, we define x1, . . . , xn−1, such that
xi ∈ Ai and d(xi, xi+1) <

1
2i
. Because (X, d) is complete, we can find x ∈ X with xn → x

and by construction, x ∈ L. For k ≥ n, we observe

d(a, x) = d(xn, x) ≤
k∑

i=n

d(xi, xi+1) + d(xk+1, x) <
k∑

i=n

1

2i
+ d(xk+1, x)

and taking the limit k → ∞ yields

d(a, L) ≤ d(a, x) <
1

2n−1
≤ 1

2M ′−1
< ϵ ∀n ≥ M ′.

Now (∗) follows by taking N := max{M,M ′}.

Equipped with the two results, the proof of Theorem 2.6 is not too difficult.

Proof of Theorem 2.6. Let X ⊂ Rn be a closed subset and consider it as a metric space
with the usual Euclidean metric. By Lemma 2.8, the restriction of the Hutchinson op-
erator H : C → C is a contraction with respect to the Hausdorff metric. Because X is
closed and Rn is complete, the same holds true for X and we also have B = C. Therefore,
Lemma 2.9 implies that (C, dH) is a complete metric space. Banach’s fixed point theorem
guarantees the existence of a unique fixed point F ∈ C; that is, H(F ) = F . Furthermore,
the theorem yields that limn→∞ dH(H

n(A), F ) = 0 for any A ∈ C. If we additionally
have H(A) ⊂ A, then Hn(A) is a decreasing sequence, so by uniqueness of the limit we
conclude F =

⋂∞
n=0 H

n(A).

It is interesting to note that Hutchinson’s version of Theorem 2.6 ([Hut81, 3.1]) is more
general, since he allows for arbitrary complete metric spaces. However, in that case spe-
cial care has to be taken since in general C ⊊ B.

The significance of this theorem is two-fold: On the one hand, it is of large theoretical
importance as it guarantees the existence of many fractals. On the other hand, it allows
us to approximate any fractal that is given by an iterated function system. The details
of its usage for simulating fractals will be given in the following section.
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2.3 Simulation of Fractals

Theorem 2.6 gives rise to the following algorithm, which can be used to approximate any
set that is invariant under some iterated function system.

Algorithm 2.10 (Simulation of Fractals). Let {fi : 1 ≤ i ≤ m}, fi : Rn → Rn be an
iterated function system with Hutchinson operator H. The corresponding invariant set
F can be approximated as follows:

1. Choose a compact subset A ⊂ Rn, such that H(A) ⊂ A.

2. For n ∈ N, plot Hn(A).
Because H(A) ⊂ A, we have Hn+1(A) ⊂ Hn(A) and thus the plotted set becomes
smaller as n increases. By Theorem 2.6, Hn(A) provides a good approximation of
the invariant set F when n is large; and this approximation becomes exact in the
limit.

Our next goal is to implement this algorithm in the programming language Julia, so that
we can generate many interesting fractals. We restrict ourselves to the case n = 2 and
assume that all fi are affine transformations.
Even though the algorithm in written form is rather simple, its implementation is more
involved. Because the algorithm essentially boils down to applying the Hutchinson oper-
ator to compact subsets of R2, it is first required to find a suitable way to represent such
subsets of the plane in Julia. Luckily, it suffices for our purposes to work with polygons
like rectangles or triangles instead of arbitrary compact sets. We may represent a polygon
as an ordered vector (list) of vertices, where each vertex is given by a tuple representing
its coordinates. For example, the unit square with lower left corner at the origin is given
by

[(0,0),(1,0),(0,1),(1,1)].

As a second step, we implement a function corresponding to the Hutchinson operator.
However, instead of acting on arbitrary subsets of R2, our function is only defined on the
set of polygons in R2. Because affine transformations preserve lines and parallelism, they
also preserve polygons. The action of an affine transformation on a polygon is thus given
by transforming each vertex individually. In Julia, our polygon-restricted version of the
Hutchinson operator looks as follows:

function Hutchinson_operator(functions)

return polygon -> [[f(x...) for x in polygon] for f in functions]

end

This function - called Hutchinson operator - requires a list of functions functions as
an argument and returns a function resembling the Hutchinson operator. The returned
function takes a single polygon (here called polygon) as a parameter, and returns a list
of polygons consisting of the images of that polygon under each of the functions from the
supplied list. If functions is comprised of n functions, then the function returned by
Hutchinson operator calculates a list containing n polygons.
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The crux of the algorithm is the iteration of the Hutchinson operator. If the fi are fixed,
then the function Hutchinson operator returns a function g, which is our version of
the Hutchinson operator. However, g maps a given polygon to a list of polygons, so it
cannot be directly iterated. Instead, we want to apply g to every polygon in a given list,
producing a list of lists of polygons, which will then be “flattened”; i.e. the lists will be
concatenated to a single larger list. For example, when the supplied list consists of two
polygons p1, p2, this can be visualized as follows:

[p1, p2] [[x1, . . . , xn], [y1, . . . , yn]] [x1, . . . , xn, y1, . . . , yn].
g concat

In fact, this works much more generally: Let f be a function mapping instances of a data
type A (in mathematical terms: elements of a set A) to a list of instances of data type
B (in mathematical terms: an element of the free monoid of B). Then we can define an
action of f on a list of instances of A just like we did in the case above, where A and B
were the set of polygons: Apply f to each element in the supplied list and concatenate
the results.
Readers familiar with category theory will realize that we just described the monad struc-
ture of the list monad (in mathematical terms: free monoid monad).
Unlike some purely functional programming languages (e.g. Haskell), Julia does not im-
plement any instances of monads by default, but we can easily write the function we need
ourselves:

concat(x) = vcat(x...)

bind(x, f) = concat(map(f,x))

Here concat is just the operation of concatenating (“flattening”) a list of lists and bind

corresponds to the action of a function f on a list x defined as above.

With these ideas in mind, the implementation of a function that iterates the Hutchinson
operator is not hard.

function generate_fractal(functions,polygon,n)

result = [polygon]

for i in 1:n

result = bind(result,Hutchinson_operator(functions))

end

return result

end

The function generate fractal requires a list of functions (corresponding to the fi in
Algorithm 2.10), a “starting polygon” polygon (the set A in the algorithm) and the num-
ber of desired iterations n and returns the list of polygons generated by n-times iteration
of the Hutchinson operator. This works by starting with a list consisting only of polygon
(the unit of the list monad applied to polygon) and then iterating the Hutchinson oper-
ator using our defined bind function and a for loop.

Having defined generate fractal such that it calculates the desired approximation as a
list of polygons, we finish our implementation by writing a function to plot its result. For
this, we import the Plots package:
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using Plots

As the name suggests, this package can be used to plot many mathematical objects. In
particular, it provides the Shape data type, which represents polygons in the same way
as we did before. The advantage of this data type is that it can be easily plotted as the
corresponding polygon. Equipped with this data type, we can finally plot our fractals:

1 function plot_fractal(functions,polygon,n)

2 xs = map(first,polygon)

3 ys = map(last,polygon)

4 xlim = (minimum(xs),maximum(xs))

5 ylim = (minimum(ys),maximum(ys))

6 if xlim[1] == xlim[2]

7 xlim = (xlim[1]-1,xlim[1]+1)

8 end

9 if ylim[1] == ylim[2]

10 ylim = (ylim[1]-1,ylim[1]+1)

11 end

12 polygons = generate_fractal(functions,polygon,n)

13 shapes = map(Shape, polygons)

14 result = plot(xlims = xlim, ylims = ylim, aspect_ratio=:equal,

15 legend = false, border=:none)

16 map(shape -> plot!(shape,color = "black"), shapes)

17 display(result)

18 end

This code block defines the function plot fractal, which embodies Algorithm 2.10 and
has the same arguments as the function defined before. While the definition is rather
long, the vast majority of code exists only for “visual purposes”. Namely, in the lines 2
to 5, we determine the intervals in x and y-direction (called xlim and ylim, respectively),
which our plot should show. We do this by examining our “starting shape” and using its
minimal and maximal x-component (respectively y-component) as the boundary of the
interval.
The lines 6 to 11 are of little importance; they only deal with the special case that the
starting shape is 1-dimensional such that the calculated interval boundaries agree, in
which case the respective interval is defined manually.
In line 12, we employ generate fractals to calculate the list of polygons, which we then
transform to the data type Shape (line 13), so that they can be easily plotted.
In the lines 14 and 15, we set a variety of visual parameters for our plot. This includes
setting the intervals in x and y-direction to the values determined before, forcing equal
scaling in both directions and removing the legend and coordinate axes. For details re-
garding the keywords consult the documentation [Bre].
Finally, we plot all the polygons in the list (line 16) and display the result (line 17).

This concludes our implementation of Algorithm 2.10. The generality of our implemen-
tation is quite remarkable: It allows us to simulate arbitrary fractals in R2, when we are
given its iterated function system and a “starting polygon”, which contains its own image



2 FRACTALS AS SELF-SIMILAR OR SELF-AFFINE SETS 9

under the Hutchinson operator.
The price for this generality is the terrible runtime of the algorithm: Given m functions,
the corresponding Hutchinson operator returns a list of m polygons when applied to a
single polygon. Therefore, the n-th approximation of our fractal consists of mn polygons.
Each of the fi is applied in every iteration to every polygon, so in total any fi is applied

n−1∑
i=0

mi =
mn − 1

m− 1

times to a polygon. Furthermore, our polygon consists of k vertices, so each fi is actually
applied

mn − 1

m− 1
· k

times. In total, our algorithm requires

mn − 1

m− 1
· k ·m

function applications of the fi.
It is clear that this exponential relationship in n forbids the calculation of the fractal for
large n. Therefore, other algorithms (oftentimes adapted to the specific fractal at hand)
are required to calculate more precise approximations.
Regardless, our algorithm produces surprisingly good and visually appealing results even
for small n, which we will explore in the next section.

2.4 Examples of Fractals

We present a gallery of beautiful fractals (or rather, their approximations), utilizing our
implementation from the previous section.
To use our function, we only have to define the functions of the iterated function system
of the fractal and choose a “starting polygon”. We will usually start with the unit square
with lower left corner at the origin, but there is nothing special about it; any polygon that
contains its own image under the Hutchinson operator can be used. While the images
obtained when changing the “starting polygon” will be slightly different, in the limit all
images must agree, as this is a consequence of Theorem 2.6.
In our examples, we will first offer the Julia code and then show the resulting images.

Example 2.11. A well-known fractal is the Koch curve, originally introduced by Helge
von Koch in 1904. It is the fractal defined by the iterated function system

f1(x, y) =

[
1
3
x

1
3
y

]
,

f2(x, y) =

[
cos(1

3
π) − sin(1

3
π)

sin(1
3
π) cos(1

3
π)

] [
1
3
x

1
3
y

]
+

[
1
3

0

]
,

f3(x, y) =

[
cos(5

3
π) − sin(5

3
π)

sin(5
3
π) cos(5

3
π)

] [
1
3
x

1
3
y

]
+

[ 1
2√
3
6

]
,
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f4(x, y) =

[
1
3
x

1
3
y

]
+

[
2
3

0

]
.

Thus we can plot the Koch curve with the following Julia code:

f_1(x,y) = (1/3 * x, 1/3 * y)

f_2(x,y) = (1/3 + cos(1/3 * pi) * 1/3 * x - sin(1/3 * pi) * 1/3 * y,

sin(1/3 * pi) * 1/3 * x + cos(1/3 * pi) * 1/3 * y)

f_3(x,y) = (1/2 + cos(5/3 * pi) * 1/3 * x - sin(5/3 * pi) * 1/3 * y,

sqrt(3)/6 + sin(5/3 * pi) * 1/3 * x + cos(5/3 * pi) * 1/3 * y)

f_4(x,y) = (2/3 + 1/3 * x, 1/3 * y)

plot_fractal([f_1,f_2,f_3,f_4],[(0,0),(1,0),(1,1),(0,1)],n)

Figure 1: The Koch curve from n = 0 (top left) to n = 5 (bottom right).

Example 2.12. As a second example, we study the Sierpiński triangle, which can be
plotted using the following code:

f_1(x,y) = (1/2 * x, 1/2 * y)

f_2(x,y) = (1/2 + 1/2 * x, 1/2 * y)

f_3(x,y) = (1/4 + 1/2 * x, 1/2 + 1/2 * y)

plot_fractal([f_1,f_2,f_3],[(0,0),(1,0),(1,1),(0,1)],n)



2 FRACTALS AS SELF-SIMILAR OR SELF-AFFINE SETS 11

Figure 2: The Sierpiński triangle from n = 0 (top left) to n = 5 (bottom right).

Example 2.13. The Sierpiński carpet was originally defined by Sierpiński in 1916 and
constitutes a generalization of the well-known Cantor set to two dimensions. We may plot
it with the following code:

f_1(x,y) = (1/3 * x, 1/3 * y)

f_2(x,y) = (1/3 * x + 1/3, 1/3 * y)

f_3(x,y) = (1/3 * x + 2/3, 1/3 * y)

f_4(x,y) = (1/3 * x, 1/3 + 1/3 * y)

f_5(x,y) = (2/3 + 1/3 * x, 1/3 + 1/3 * y)

f_6(x,y) = (1/3 * x, 2/3 + 1/3 * y)

f_7(x,y) = (1/3 + 1/3 * x, 2/3 + 1/3 * y)

f_8(x,y) = (2/3 + 1/3 * x, 2/3 + 1/3 * y)

plot_fractal([f_1,f_2,f_3,f_4,f_5,f_6,f_7,f_8],

[(0,0),(1,0),(1,1),(0,1)],n)
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Figure 3: The Sierpiński carpet from n = 3 (left) to n = 5 (right).

Example 2.14. Another example is the Vicsek fractal, which we can plot as follows.

f_1(x,y) = (1/3 + 1/3 * x, 1/3 * y)

f_2(x,y) = (1/3 * x, 1/3 + 1/3 * y)

f_3(x,y) = (1/3 + 1/3 * x, 1/3 + 1/3 * y)

f_4(x,y) = (2/3 + 1/3 * x, 1/3 + 1/3 * y)

f_5(x,y) = (1/3 + 1/3 * x, 2/3 + 1/3 * y)

plot_fractal([f_1,f_2,f_3,f_4,f_5],[(0,0),(1,0),(1,1),(0,1)],n)

Figure 4: The Vicsek fractal from n = 3 (left) to n = 5 (right).

We have highlighted some well-known fractals and due to the large generality of our
algorithm, the possibilities are almost endless. It is easy to change one of the defining
functions to derive some other variant or to merely see which fractal structure reveals
itself. But it is equally simple to define own, personal fractals. A final example shall
illustrate this.

Example 2.15. The functions in the following code defines a fractal, which we name
butterfly fractal (because parts of it look somewhat like a butterfly).

f_1(x,y) = (1/4 + 1/2 * x, 1/2 * y)

f_2(x,y) = (1/2 * x, 1/4 + 1/2 * y)
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f_3(x,y) = (1/2 + 1/2 * x, 1/4 + 1/2 * y)

f_4(x,y) = (1/4 + 1/2 * x, 3/4 + 1/2 * y)

plot_fractal([f_1,f_2,f_3,f_4],[(0,0),(1,0),(1,1),(0,1)],n)

Figure 5: The butterfly fractal from n = 3 (left) to n = 5 (right).

We hope the presented examples convinced the reader that fractals are indeed beautiful.
Even though the highlighted examples also looked rather artificial, fractals can also re-
semble naturally occurring objects. An example for this is the Barnsley fern, described
by Michael Barnsley in his book [Bar93], which looks like a fern from nature. It is also
an example of a fractal that employs randomization, which is the reason why it cannot
be directly plotted with our algorithm.
In order to understand random fractals, we need to highlight another “form” of self-
similiarity, called statistical self-similarity. While much can be said about random frac-
tals, we choose a slightly different route and talk about statistical self-similarity in the
context of fractional Brownian motion.

3 Fractals as statistically self-affine Sets

In the previous section, we have defined multiple notions describing how an object can
be similar to itself at different scales. However, our definitions (see 2.4) are limited in the
sense that they do not account for randomness. This is especially grave due to the fact
that many “fractal-like” objects occurring in nature are not precise fractals but appear
to have random deviations.
A useful tool to describe such objects is fractional Brownian motion, which constitutes a
generalization of (ordinary) Brownian motion.

3.1 Brownian Motion

While Brownian motion for us is mostly a stepping stone towards fractional Brownian
motion, its relevance in probability theory can hardly be understated. For example,
Kallenberg calls it “arguably the single most important object of modern probability”
[Kal21, p. 297].
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In order to characterize Brownian motion, we need to define random processes. Their
definition can be found in the standard literature of probability theory, e.g. [Kle20, Def.
9.1].

Definition 3.1. Let (Ω,A, ρ) be a probability space, (X,L) a measurable space and I
an index set. A random process (or stochastic process) is a collection {X(i) : i ∈ I}
of random variables X(i) : Ω → X.
Any ω ∈ Ω gives rise to a sample function

X(−, ω) : I → X, i 7→ X(i, ω).

Here the space X is called the state space, because it consists of the different values
that a random process may have.

We are mainly interested in the case that (X,L) = (R,B) are the real numbers R,
equipped with the Borel σ-algebra B and I = [0,∞). Then the index set I can be
interpreted as time. In that case, one can look at increments X(t2) − X(t1) for t1, t2 ∈
[0,∞), t1 ≤ t2 to estimate how the random process changes over a given time period.

Definition 3.2. A random process {X(i) : i ∈ I} with X(i) : Ω → R is called centered,
if we have E[X(i)] = 0 for every i ∈ I.

A useful prerequisite for understanding Brownian motion are random walks, which will
prove useful to us when simulating Brownian motion (Algorithm 3.6).

Example 3.3. An important and heavily studied random process is the random walk.
For i ∈ N \ {0}, let Yi be a “coin flip”; i.e. a uniformly distributed random variable with

P(Yi = 1) = P(Yi = −1) =
1

2

and assume that the Yi are independent. Denote their n-th partial sum by Xn :=
∑n

i=1 Yi.
A simple random walk is a random process {X(i) : i ∈ N}, where X(0) = 0 and
X(n) = Xn as above [Rev13, Chapter 1].
As a slight generalization, one can choose a time interval τ > 0 and a step size h > 0
and take a step of size h at every multiple of τ . In the description above, we have
τ = h = 1. Then a random walk with time interval τ and step size h is a random process
{X ′(i) : i ∈ τN} with X ′(i) = h ·X( i

τ
), where X is a simple random walk.

Clearly, we have

E[X ′(i)] = h · E
[
X

(
i

τ

)]
= h ·

i/τ∑
i=1

E[Yi] = 0,

so the random walk is centered.

The key difference between Brownian motion and other kinds of random processes lies in
the fact that increments are assumed to be normally distributed and independent. This
is made more precise in the following definition.

Definition 3.4. The Brownian motion (or Wiener process) is a random process
{X(t) : t ∈ [0,∞)} with X(t) : Ω → R, such that:
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(a) It applies X(0) = 0 almost surely and X : [0,∞) → R is continuous almost surely.

(b) For any t ≥ 0 and h > 0, the increment X(t + h) − X(t) is normally distributed
with mean 0 variance h.

(c) Pairs of increments are independent; i.e. for 0 ≤ t1 ≤ t2 ≤ · · · ≤ t2m, the increments
X(t2)−X(t1), X(t4)−X(t3), . . . , X(t2m)−X(t2m−1) are independent.

For t ∈ [0,∞), (a) implies that X(t) = X(t) −X(0) almost everywhere, so by (b), X(t)
is normally distributed with mean 0 and variance t. In particular, X(t) is centered.
A priori, it is not clear whether a random process with the desired properties actually
exists. That this is indeed the case can be proven by considering random walks with time
intervals τ > 0 and taking the limit τ → 0.

Theorem 3.5 ([Kuo06, Theorem 1.2.2]). Let {Xτ (i) : i ∈ τN} be a random walk with
time interval τ > 0 and step size h :=

√
τ . For every t ∈ [0,∞), the limit

B(t) := lim
τ→0

Xτ (i)

exists in distribution and B constitutes Brownian motion.

Due to this theorem, we may interpret Brownian motion as the continuous limit of a
collection of discrete random walks. It also gives rise to the following simple algorithm,
which can be used to simulate Brownian motion.

Algorithm 3.6 (Simulation of Brownian motion).

1. Choose a finite set of evenly spaced points 0 = x0 < x0 + τ < x0 + 2τ < · · · <
x0 + (m− 1)τ = x1.

2. Simulate a random walk X with time interval τ and step size h :=
√
τ . By Theorem

3.5, this provides a good approximation of Brownian motion when τ is small.

We now implement the algorithm in Julia.

1 function random_walk(tau,x)

2 points = range(0, x, step = tau)

3 h = sqrt(tau)

4 m = length(points)

5 Y = map(b -> if b h else -h end, rand(Bool,m))

6 values = [0.0]

7 for i in 2:m

8 new_value = values[i-1] + Y[i]

9 push!(values, new_value)

10 end

11 return points, values

12 end



3 FRACTALS AS STATISTICALLY SELF-AFFINE SETS 16

This defines the function random walk, which simulates a random walk with time interval
tau > 0, starting at 0 and ending at the time specified by the parameter x. First, we
generate the set of points points for which we want to calculate the random walk (line
2) and set the step size h appropriately (line 3). In line 5, we draw the random values
representing our steps (i.e. each value is h with probability 1

2
and otherwise −h) and save

them in the vector Y. Having initialized the first value to be 0 in line 6, we determine the
value of our random walk at each time > 0 in points by iterating from i = 2 to i = m
(line 7).
The new value is then calculated by adding the i-th entry of Y (the value of the i-th “coin
flip”) to the previous value and the result is inserted into the list (vector) values (line
9). Finally, we return the points and their corresponding values of our random walk.

Plotting the linear interpolation of the produced values of the random walk function yields
graphs like the following:

Figure 6: Two simulations of Brownian motion with tau = 0.1 and x = 100.

As mentioned, our interest in Brownian motion is mainly motivated by the desire to
describe “random” fractals and we have yet to make this connection precise. It is apparent
from Figure 6 that a sample graph of Brownian motion is endowed with some form of
self-similarity, but the terminology from the previous chapter is not enough to capture
this. Indeed, since Brownian motion is non-deterministic, its sample functions cannot be
self-similar in the sense of Definition 2.4. Therefore, we adapt the notion of self-similarity
in such a way that it applies to random processes.

Definition 3.7. A random process {X(t) : t ∈ [0,∞)} with X(t) : Ω → R is called
statistically self-affine, if there exists α > 0, such that for any r, u > 0, the random
variables X(ru) and rαX(u) have the same distribution.

Intuitively, this means that changing the temporal scale by a factor r and the other scale
by a factor r−α, we obtain a random process with the same probability distribution.
Using this new notion of self-similarity, we can modify Definition 2.5.

Definition 3.8. A set F ⊂ Rn is called a fractal, if (but not only if) it is self-affine,
self-similar or the graph of a sample function of a statistically self-affine random process.
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Proposition 3.9. The Brownian motion {X(t) : t ∈ [0,∞)} is statistically self-affine. In
particular, its sample functions are fractals (in the sense of Definition 3.8).

Proof. Let r, u > 0. By (a), the distributions of X(ru) and r
1
2X(u) agree with those of

X(ru)−X(0) and r
1
2 (X(u)−X(0)), respectively. Because scaling a normally-distributed

random variable by a scalar λ ∈ R results in another normally-distributed random variable
with the same mean and λ2-scaled variance, (b) implies that both those increments are
normally distributed with mean 0 and variance ru.

3.2 Fractional Brownian Motion

It turns out that ordinary Brownian motion is quite restrictive in the sense that we cannot
control how “rough” the resulting graphs are. This problem is solved by generalizing
Brownian motion to fractional Brownian motion and introducing a parameter H (the
Hurst exponent) that controls this “roughness”.
The main feature of fractional Brownian motion lies in the fact that increments may
depend on each other. This stands in direct contrast to ordinary Brownian motion, where
pairs of increments are assumed to be independent. Intuitively, this means that the change
of the process as time advances is dependent on how the process has changed before.
To put fractional Brownian motion in the proper theoretical context, we introduce an
important class of random processes, called Gaussian processes.

Definition 3.10. A random process {X(t) : t ∈ [0,∞)} with X(t) : Ω → R is a Gaus-
sian process, if for all t1, . . . , tm ∈ [0,∞) and λ1, . . . , λm ∈ R, the random variable∑m

i=1 λiX(ti) is normally distributed.

Now we can define fractional Brownian motion.

Definition 3.11. The fractional Brownian motion with Hurst exponent H ∈ (0, 1)
is a Gaussian process {X(t) : t ∈ [0,∞)} such that:

(a) We have almost surely X(0) = 0 and X : [0,∞) → R is almost surely continuous.

(b) For any t ≥ 0 and h > 0, the increment X(t + h) − X(t) is normally distributed
with mean 0 variance h2H .

Just like for ordinary Brownian motion it follows directly from the definition that X(t)
is normally distributed with mean 0 and variance t2H , implying that fractional Brownian
motion is centered.
It is interesting to note that the original definition from Mandelbrot and Van Ness char-
acterizes fractional Brownian motion by fixing a starting value XH(0) and then setting

XH(t) := XH(0) +
1

Γ(H + 1
2
)

(∫ 0

−∞
(t− s)H− 1

2 − (−s)H− 1
2dB(s)

+

∫ t

0

(t− s)H− 1
2dB(s)

)
.

Here Γ denotes the Gamma function and B corresponds to the white noise measure
[MV68, Def. 2.1]. In fact, fractional Brownian motion had already been considered by
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Kolmogorov in [Kol40].

There is an alternative characterization of fractional Brownian motion, which is common
in the literature (see e.g. [Nou12, Def. 2.1]). We state it and prove that it is equivalent
to our definition in the following theorem.

Theorem 3.12. The random process {X(t) : t ∈ [0,∞)} is fractional Brownian mo-
tion with Hurst exponent H ∈ (0, 1) if and only if it is a centered Gaussian process
{X(t) : t ∈ [0,∞)} such that:

(a) The function X : [0,∞) → R is almost surely continuous.

(b) For all s, t ∈ [0,∞), X has the covariance function

Cov(X(s), X(t)) =
1

2

(
s2H + t2H − |t− s|2H

)
. (∗)

Proof. We have seen that fractional Brownian motion is centered, so in order to show one
direction, we only have to check that the covariance function of a fractional Brownian
motion is given by the formula (∗). For this we notice that if s = t, then

Cov(X(s), X(s)) = E(X(s)2) = Var(X(s)) = s2H =
1

2

(
s2H + s2H

)
,

so the formula holds. If s ̸= t, then because both the covariance and the formula (∗) are
symmetric, we may assume that s > t. The assumption (b) in the definition of fractional
Brownian motion implies

E
[
(X(s)−X(t))2

]
= Var(X(s)−X(t)) = (s− t)2H ,

so we conclude

Cov(X(s), X(t)) = E[X(s)X(t)]

=
1

2
· E
[
−(X(s)−X(t))2 +X(s)2 +X(t)2

]
=

1

2
·
(
−E
[
(X(s)−X(t))2

]
+ E[X(s)2] + E[X(t)2]

)
=

1

2
·
(
−(s− t)2H + s2H + t2H

)
.

On the other hand, suppose {X(t) : t ∈ [0,∞)} is a centered Gaussian process satisfying
(a) and (b). Since X is centered and

Var(X(0)) = Cov(X(0), X(0)) = 0,

it follows X(0) = 0 almost surely. Furthermore, as X is a centered Gaussian process, for
t ≥ 0 and h > 0, the increment X(t+ h)−X(t) is normally distributed with mean 0 and
variance

Var(X(t+ h)−X(t)) = E
[
(X(t+ h)−X(t))2

]
= E

[
X(t+ h)2

]
− 2E[X(t+ h)X(t)] + E

[
X(t)2

]
= Var(X(t+ h))− 2Cov(X(t+ h), X(t)) + Var(X(t))

= (t+ h)2H − (t+ h)2H − t2H + h2H + t2H = h2H .
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Just as in the case of ordinary Brownian motion, it must be proven that fractional Brown-
ian motion actually exists. However, this proof turns out to be rather involved, requiring
advanced results from probability theory. Therefore, we will omit the proof and instead
redirect the interested reader to [Nou12, Prop. 1.6]. There it is shown that a random
process with the properties described in Theorem 3.12 exists, so by that theorem the same
holds for fractional Brownian motion as we have defined it.

Notice that for H = 1
2
, fractional Brownian motion just becomes ordinary Brownian

motion. It is not surprising that they share the key property of statistical self-similarity.

Proposition 3.13. Fractional Brownian motion is statistically self-affine.

Proof. This follows with exactly the same proof as Proposition 3.9, replacing 1
2
by H.

We now want to present an algorithm which simulates fractional Brownian motion and
implement it as a Julia function. The chosen algorithm and multiple alternatives are
described in [Jea00].

Algorithm 3.14 (Simulation of fractional Brownian motion with Hurst expo-
nent H ∈ (0, 1)).

1. Choose a finite set of points 0 < t1 < · · · < tm for which the value of a sample of
fractional Brownian motion X will be calculated.

2. Calculate the covariance matrix A for those points, which according to Theorem
3.12 is given by

Ai,j = Cov(X(ti), X(tj)) =
1

2

(
ti
2H + tj

2H − |tj − ti|2H
)
.

3. Perform a Cholesky-decomposition of A; i.e. find a m×m-matrix M with M ·MT =
A.

4. Let V ∈ Rm be a vector of independent standard normally distributed random
variables. Then the i-th entry of the vector X := M · V is the value of our sample
at time ti; that is, X(ti) := Xi is the desired sample function.

The reason that we require t1 > 0 is that otherwise the first column of A will be zero,
implying that A is not an Hermitian positive-definite matrix, so the Cholesky decompo-
sition wouldn’t exist.
To see that the algorithm indeed yields a sample function of fractional Brownian motion
with Hurst exponent H ∈ (0, 1), we check that X satisfies the equivalent characterization
of Theorem 3.12 (or rather a discrete version of it, where [0,∞) is replaced by the set
{ti : 1 ≤ i ≤ m}). Indeed, we have

E[X(ti)] = E

[
m∑
j=1

Mi,jVj

]
=

m∑
j=1

Mi,jE[Vj] = 0

and the calculation

E
[
X ·XT

]
= E

[
M · V · V T ·MT

]
= M · E

[
V · V T

]
·MT = M ·MT = A,
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implies that

Cov(X(ti), X(tj)) = E
[(
X ·XT

)
i,j

]
= Ai,j.

Because a linear combination of independent, normally distributed random variables is
again normal, the process is Gaussian.

We now implement Algorithm 3.14 in the programming language Julia. First, we import
two required packages, one for the simulation of probability distributions and the other
for common operations of linear algebra.

using Distributions

using LinearAlgebra

The following code block defines the function fractional brownian motion, which will
be used to simulate fractional Brownian motion.

1 function fractional_brownian_motion(H,x_0,x_1,tau)

2 points = range(x_0, x_1, step = tau)

3 m = length(points)

4 V = rand(Normal(),m)

5 A = zeros(m,m)

6 for i in 1:m

7 for j in 1:m

8 s = points[i]

9 t = points[j]

10 A[i,j] = 1/2 * (s^(2H) + t^(2H) - abs(s - t)^(2H))

11 end

12 end

13 M = cholesky(A)

14 return points, M.L * V

15 end

The function requires four arguments; the Hurst exponent H and three other parameters
which are used in line 2 to determine the set of points for which a sample of fractional
Brownian motion will be calculated. More precisely, we generate a set of uniformly spaced
points, starting at x 0 and ending at x 1 with a step width of tau. In the lines 5-12, we
calculate the covariance matrix A. This corresponds to step 2 of Algorithm 3.14. The
Cholesky decomposition of step 3 is performed in line 13. Its result is multiplied with the
vector V, which we generated in line 4 using standard normal distribution.

Using this function, we can plot fractional Brownian motion for various values of the
Hurst exponent H. It is obvious from the graphs on the next page that a low value of H
corresponds to a rougher graph, whereas large values of H correspond to a smoother one.
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Figure 7: Simulations of fractional Brownian motion with x 0 = 0, x 1 = 100, tau = 0.1
and H increasing from 0.1 (top left) to 0.9 (bottom) by steps of 0.2.

4 Conclusion

Due to the enormous size of fractal geometry we could only give a brief overview of its
key notion - the fractal. The next natural step would be to search for parameters that
describe them. Inspired by Euclidean geometry, the notion of dimension is an obvious
candidate. Indeed, dimension theory has established itself as a central pillar in the study
of fractals and its applications. However, conventional notions of dimension like the topo-
logical dimension turn out to be non-sufficient, since they ignore the fine structure of
fractals. Therefore, a large number of alternative definitions of a fractal dimension have
been introduced, like the Hausdorff dimension, the box-counting dimension or the simi-
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larity dimension [MF03].
As mentioned, fractal geometry was inspired and motivated by many phenomena occur-
ring in the real world. Thus, it is not surprising that they prove useful in physics and
many related fields.
However, it is important to realize that the fractals encountered in nature are not self-
similar under arbitrary magnifications, but only for a certain range of length scales. Re-
gardless, a large number of phenomena occurring in reality have been convincingly mod-
eled using the tools of fractal geometry. For example, many experiments have shown that
cracks can be modeled using fractals (see e.g. [MPP84] or [Hin+08]). There are also
attempts to model cracks using fractional Brownian motion, see [Add+12].
Using the fractal dimension, it is possible to characterize fractals and distinguish them
from scratches, which are harmless in the context of many applications [SVR95]. Brown-
ian motion inherently has many physical applications, as it constitutes the mathematical
model of the physical movement of particles, originally observed by Robert Brown in 1827
[Fal14, p. 279].
While applications of fractals in physics are probably the most prominent, they also reveal
themselves in many other areas like geology (see e.g. [Car97]). A particularly well-known
example of this is Mandelbrot’s calculation of the fractal dimension of the coast of Great
Britain in [Man67]. Fractals are also employed in the study of finances to model the
behavior of prices of assets in stock markets [Nua06].
Another somewhat surprising application of fractals and iterated function systems (see
Definition 2.2) appears in fractal image compression. The main goal of this area of com-
puter science is to store images on a computer in such a way that the amount of occupied
memory is as small as possible [Fis95].
The highlighted applications show that fractals are not only visually intriguing but also
serve a “higher purpose” for many disciplines of science. The simulation of fractals thus
constitutes an important tool for creating, verifying and improving models in those areas
of science.
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