
Computer Algebra

Lecture Notes

based on a lecture by Prof. G. Kemper

Marvin Jahn, Leonhard Lampart

mail@marvin-jahn.de, leonhard@lampart.eu

February 17, 2022

mailto:mail@marvin-jahn.de
mailto:leonhard@lampart.eu

Contents

Contents

1 Integer Arithmetic 1
1.1 Addition of Integers . 1
1.2 Multiplication of Integers . 2

1.2.1 Grid Multiplication . 2
1.2.2 Karatsuba-Multiplication . 3
1.2.3 Discrete Fourier Transform . 4

1.3 Division with Remainder and Greatest Common Divisors 12
1.4 Primality Testing . 15

1.4.1 The Fermat Test . 17
1.4.2 The Miller-Rabin Test . 19
1.4.3 The AKS-test . 20

2 Cryptography 29
2.1 RSA Encryption . 29
2.2 Diffie-Hellman Key Exchange . 33

3 Factorization 34
3.1 Pollard’s rho Method . 34
3.2 Pollard’s p− 1 Algorithm . 36
3.3 The Quadratic Sieve . 37

4 A Computational View towards Linear Algebra 42
4.1 Complexity of Operations from Linear Algebra 42
4.2 Strassen Multiplication . 43
4.3 Common Operations as Matrix Multiplication 44

5 Algebraic Systems of Equations and Gröbner Bases 51
5.1 Affine Varieties . 51
5.2 The Univariable Polynomial Ring . 51
5.3 Resultant method . 51
5.4 Hilbert’s Nullstellensatz . 52
5.5 Monomial Orderings . 53
5.6 Gröbner Bases . 55
5.7 Buchberger’s Algorithm . 58

6 Applications of Gröbner Bases 63
6.1 Elimination Ideals . 63
6.2 Dimensions . 67

These are (unofficial) lecture notes for the lecture Computer Algebra held by Prof. G.
Kemper at the Technical University Munich in the winter semester 2021/22.

1 Integer Arithmetic 1

1 Integer Arithmetic
Lec 1
2021-10-191.1 Addition of Integers

Any natural number x ∈ N := {0, 1, 2, . . .} can be written with respect to a fixed basis
B ∈ N>1 as

x =
n−1∑
i=0

ai ·Bi with 0 ≤ ai < B and n ∈ N.

We will mainly use binary representation B = 2, which plays a major role in computer
science.

Definition 1.1. The length l(x) of x ∈ Z w.r.t. basis B ∈ N>1 is defined to be

l(x) :=

{
⌊logB(|x|)⌋+ 1 if x ̸= 0

1 if x = 0
.

If x ̸= 0, we may choose n ∈ N such that an−1 ̸= 0 and in that case, l(x) = n. The
length of x = sign(x) · |x| may be thought of as the amount of storage required to save
x on a computer with respect to the basis B. Technically, negative numbers require an
additional bit for the minus sign, but we ignore this, since a single bit does not matter
in the following arguments.

We start with the naive algorithm for addition like it is taught in elementary school.

Algorithm 1.2 (Addition of natural numbers).

Input: x =
∑n−1

i=0 aiB
i, y =

∑n−1
i=0 biB

i ∈ N.

Output: z =
∑n

i=0 ciB
i = x+ y.

(1) Set δ := 0.

(2) For i = 0, . . . , n− 1:

(3) Let ci := ai + bi + δ.

(4) Set δ := 0.

(5) If ci ≥ B: set ci := ci −B and δ := 1.

(6) Define cn := δ.

Definition 1.3 (informal). A bit-operation is an operation that can be realized by one
logic gate (and, or, not, xor) or by reading a bit from or writing a bit to memory.

For example, Algorithm 1.2 needs 10n+ 2 bit-operations.

Definition 1.4. Let M be a set and f, g : M → R>0 two functions. We write f ∈ O(g)
if there exists c ∈ R, such that f(x) ≤ c · g(x) for all x ∈M .

Since we assumed that our functions map to the positive real numbers R>0, this is
equivalent to the usual definition, where one requires f(x) ≤ c · g(x) to hold for all but
finitely many x ∈M .

1 Integer Arithmetic 2

Theorem 1.5. Let

f : N>0 → R, n 7→ max
{
number of bit-operations required for addition of

x, y ∈ N with l(x) ≤ n, l(y) ≤ n
}

and
ι : N>0 → R, n 7→ n

the canonical inclusion. Then f ∈ O(ι); i.e. Algorithm 1.2 requires O(n) bit-operations.
We say that it has linear complexity.

It is clear that this upper bound is actually optimal, since any algorithm for addition
of two numbers needs to write the result, which already has linear complexity.

From now on, we will be less precise and omit such a max{. . .} term, even though
this will always be what we mean when we investigate the complexity of an algorithm.

Subtraction of two natural numbers x =
∑n−1

i=0 aiB
i, y =

∑n−1
i=0 biB

i with x ≥ y can
be reduced to addition by the following trick: Define the complement ȳ of y as follows:

ȳ :=
n−1∑
i=0

(B − 1− bi)Bi =
n−1∑
i=0

(B − 1)Bi − y = Bn − 1− y

Therefore, x− y = x+ ȳ+ 1−Bn is obtained from x+ ȳ by starting Algorithm 1.2 with
δ = 1 and removing one from the coefficient of Bn.
In particular, subtraction of two natural numbers has linear complexity. This also means
that addition and subtraction of whole numbers has linear complexity.

1.2 Multiplication of Integers

1.2.1 Grid Multiplication

From now on, we represent all our natural numbers in binary (B = 2). We start with the
grid multiplication algorithm from elementary school.

Algorithm 1.6 (Grid Multiplication).

Input: x =
∑n−1

i=0 ai2
i, y =

∑m−1
j=0 bj2

j ∈ N.

Output: z = x · y.

(1) Let z := 0.

(2) For i = 0, . . . , n− 1:
If ai = 1: z := z +

∑m−1
j=0 bj2

i+j.

Theorem 1.7. Grid multiplication of numbers of length n and m (using Algorithm 1.6)
requires O(n ·m) bit-operations (here the number of bit-operations is a function N>0 ×
N>0 → R).
As a function of the total length of input n+m, it has quadratic complexity O((n+m)2)

since n ·m ≤ (n+m)2

2
.

1 Integer Arithmetic 3

1.2.2 Karatsuba-Multiplication

While we saw that the naive algorithm for addition (Algorithm 1.2) already has the
best possible complexity, this is not the case for the naive algorithm for multiplication
(Algorithm 1.6). An improvement is the Karatsuba multiplication algorithm.

We make the following observation: For two polynomials ax + b, cx + d of degree 1,
one can write their product as

(ax+ b)(cx+ d) = acx2 + (ac+ bd− (a− b)(c− d))x+ bd, (∗)

which only uses three distinct multiplications instead of four. This leads to the following
idea:

• Specialize x = B for a very big basis B ∈ N.

• Use recursive calls for the three multiplications.

Algorithm 1.8 (Karatsuba-Multiplication).

Input: Natural numbers x, y ∈ N.

Output: z = x · y.

(1) Let k ∈ N minimal, such that l(x), l(y) ≤ 2k.

(2) If k = 0: Return x · y via a single and operation.

(3) Set B := 22
k−1

and write x = x0 + x1B, y = y0 + y1B with 0 ≤ xi, yi < B.

(4) Compute x0 · y0, x1 · y1 and (x0−x1) · (y0− y1) by a recursive application of this
algorithm.

(5) Return z = x0y0 + (x0y0 + x1y1 − (x0 − x1)(y0 − y1))B + x1y1B
2.

Proof (of correctness). By definition of k ∈ N, if k = 0, then x and y are only a single
bit each, so multiplication is indeed a single and operation. If k > 0, then we have
22

k−1 ≤ x, y < 22
k
and therefore x and y can be written as in step (3).

The numbers that are multiplied in step (4) are less than B, so k decreases with each
recursive application and the algorithm must terminate.
The correctness of the result then follows from (∗).

Lec 2
2021-10-21

Theorem 1.9. For any two natural numbers x, y ∈ N with l(x), l(y) ≤ n, Karatsuba-
multiplication (Algorithm 1.8) requires O(nlog2(3)) bit-operations.

Proof. Consider

Θ(k) := max
{
number of bit-operations required for x · y : x, y ∈ N with l(x), l(y) ≤ 2k

}
.

If k ≥ 1, then
Θ(k) ≤ 3Θ(k − 1) + C · 2k (∗)

for some constant C > 0, since there are three recursive calls and the additions, subtrac-
tions and the rewriting in step (3) require O(2k) bit-operations.
Claim: Θ(k) ≤ 3k + 2C(3k − 2k) for all k ∈ N.
We prove this by induction on k.

1 Integer Arithmetic 4

k = 0: This is true, because Θ(0) = 1.

k − 1→ k: The claim follows from the calculation

Θ(k)
(∗)
≤ 3Θ(k − 1) + C · 2k

≤ 3 · (3k−1 + 2C(3k−1 − 2k−1)) + C · 2k

= 3k + 2C(3k − 2k).

For given n ∈ N, choose k ∈ N minimal such that n ≤ 2k. Then 2k−1 < n and it follows
k − 1 < log2(n). Using the claim, we conclude

Θ(k) ≤ (1 + 2C)3k ≤ 3(1 + 2C)3log2(n) = 3(2C + 1) · 2log2(3)·log2(n) = 3(2C + 1)nlog2(3).

Since n ≤ 2k, Θ(k) is an upper bound for

τ(n) := max{number of bit-operations required for x · y : x, y ∈ N with l(x), l(y) ≤ n}

and thus τ(n) ∈ O(nlog2(3)).

Because log2(3) ≈ 1.59 < 2, this shows that Karatsuba-multiplication (Algorithm 1.8)
provides a substantial improvement over grid multiplication (Algorithm 1.6).

1.2.3 Discrete Fourier Transform

We investigate another way to calculate the product of two integers in an efficient way
and start with some seemingly unrelated notions from analysis.

For a function f : R→ C, the Fourier Transform of f (if it exists) is defined to be

f̂ : R→ C, ω 7→
∫ ∞

−∞
f(t) · eiωtdt.

The convolution f ∗ g of two functions f, g : R→ C is the function

(f ∗ g) : R→ C, x 7→
∫ ∞

−∞
f(t) · g(x− t)dt.

Under suitable conditions, the convolution rule holds true and states that

f̂ ∗ g = f̂ · ĝ.

Polynomial multiplication f ·g of two polynomials f, g ∈ C[x] can be seen as a special
case of convolution with respect to the measure µ :=

∑∞
i=0 1{i}, where 1{i} is the Dirac

measure with 1{i}(A) = 1 if i ∈ A and 1{i}(A) = 0 otherwise. For this, we notice that a
polynomial f =

∑m
i=0 aix

i induces the function

R→ C, r 7→

{
ar if r ∈ N
0 otherwise

.

This gives an injective C-linear map C[x] ↪→ CR. Then for f =
∑m

i=0 aix
i, g =

∑n
i=0 bix

i ∈
C[x], we have (f ∗ g)(r) = 0 if r /∈ N and otherwise

(f ∗ g)(r) =
∫
t∈N

atbr−tdµ =
∞∑
i=0

∫
t∈N

atbr−td1{i} =
∞∑
i=0

aibr−i.

1 Integer Arithmetic 5

This means that f ∗ g precisely corresponds to the polynomial f · g.
The main idea of the discrete Fourier transform is to replace the integral by a sum

and to change the exponential to a root of unity.
For a commutative ring R (always with one), there is an R-module isomorphism

∞⊕
i=0

R→ R[x],

which restricts to an R-module isomorphism

Rn =
n−1⊕
i=0

R→ R[x]≤n−1 := {f ∈ R[x] : deg(f) ≤ n− 1}.

for any n ∈ N>0. We can therefore identify Rn with R[x]≤n−1.

Definition 1.10. Let R be a commutative ring. An element µ ∈ R is called n-th root
of unity if µn = 1. It is called primitive n-th root of unity if additionally µk ̸= 1 for
all 0 < k < n.
The discrete Fourier transform with respect to µ is defined to be

DFTµ : R
n → Rn, (a0, . . . , an−1) 7→ (â0, . . . , ân−1),

where

âi :=
n−1∑
j=0

µi·jaj.

Using our identification and R[x] ↠ R[x]/(xn − 1) ∼= R[x]≤n−1 (the isomorphism is
induced by R[x]→ R[x]≤n−1,

∑
aix

i 7→
∑
ai mod nx

i mod n) this amounts to the following
for polynomials:

DFTµ : R[x]→ Rn, f 7→ (f(µ0), . . . , f(µn−1)).

The convolution rule holds true by the definition of polynomial multiplication:

DFTµ(f · g) = DFTµ(f) ·DFTµ(g).

The component-wise multiplication of two vectors with n entries requires O(n) ring op-
erations (not bit-operations!). However, DFTµ requires O(n2) ring operations for poly-
nomials of degree < n. Luckily, the Fast Fourier transform provides a faster way to
compute the discrete Fourier transform of a polynomial.

Algorithm 1.11 (Fast Fourier Transformation).

Input: f ∈ R[x], µ a 2k-th root of unity such that µ2k−1
= −1.

Output: DFTµ(f)

(1) Write f(x) = g(x2) + x · h(x2) with g, h ∈ R[x].

(2) If k = 1 (i.e. µ = −1): return (g(1) + h(1), g(1)− h(1)).

(3) By a recursive call, compute ĝ := DFTµ2(g), ĥ := DFTµ2(h) ∈ R2k−1
.

1 Integer Arithmetic 6

(4) For i = 0, . . . , 2k − 1: Set f̂i := ĝi + µiĥi, where ĝi := ĝi−2k−1 , ĥi := ĥi−2k−1 and
µi = −µi−2k−1

for i ≥ 2k−1.

(5) Return f̂ = (f̂0, . . . , f̂2k−1) ∈ R2k .

Proof (of correctness). If k = 1, then µ = −1, so step (2) computes the “base case”
correctly. By step (3), the i-th entries of ĝ and ĥ are ĝi = g(µ2i) and ĥi = h(µ2i),
respectively. Therefore, f(µi) = ĝi + µiĥi = f̂i for all i ∈

{
0, . . . , 2k−1 − 1

}
. For i ∈{

2k−1, . . . , 2k − 1
}
, we have

f(µi) = f
(
−µi−2k−1

)
= g
(
µ2(i−2k−1)

)
− µi−2k−1

h
(
µ2(i−2k−1)

)
= ĝi−2k−1 − µi−2k−1

ĥi−2k−1 ,

so the algorithm returns the correct result.

Example 1.12. Consider the primitive 4-th root of unity µ = eiπ/2 = i ∈ C and f =
a0 + a1x + a2x

2 + a3x
3 ∈ C[x]. Applying the Fast Fourier Transform (Algorithm 1.11)

yields

g = a0 + a2x, h = a1 + a3x, ĝ = (a0 + a2, a0 − a2), ĥ = (a1 + a3, a1 − a3)

and therefore

f̂ = (a0 + a2 + a1 + a3, a0 − a2 + i(a1 − a3), a0 + a2 − (a1 + a3), a0 − a2 − i(a1 − a3)).

Theorem 1.13. Let n = 2k, f ∈ R[x] a polynomial with deg f < n and µ ∈ R a primitive
n-th root of unity with µ2k−1

= −1. Then Fast Fourier Transform (Algorithm 1.11)
requires O(n · log2(n)) ring operations.

Proof. Let

Θ(k) := max
{
number of ring operations required for f ∈ R[x], deg f < 2k

}
.

For k ≥ 2, we have

Θ(k) ≤ 2Θ(k − 1) + 2k−1︸︷︷︸
powers of µ

+ 2k−1︸︷︷︸
products µiĥi

+ 2k︸︷︷︸
+/−

= 2Θ(k − 1) + 2k+1 (∗)

Claim: Θ(k) ≤ (2k − 1) · 2k ∀ k ≥ 1.
Proof by induction on k:

k = 1: This is true because Θ(1) = 2.

k − 1→ k: We calculate

Θ(k)
(∗)
≤ 2Θ(k − 1) + 2k+1 ≤ 2(2(k − 1)− 1) · 2k−1 + 2k+1 ≤ (2k − 1) · 2k.

With k = log2(n), it follows Θ(k) ≤ (2 · log2(n)− 1)n ∈ O(n · log2(n)).

We introduce the following ad-hoc terminology.

Definition 1.14. A primitive n-th root of unity is called good primitive n-th root of
unity if for all 0 < i < n, we have

∑n−1
j=0 µ

ij = 0.

1 Integer Arithmetic 7

Equivalently, we may ask that DFTµ((1, . . . , 1)) = (n, 0, . . . , 0).
Another equivalent characterization is to demand that

∑n−1
j=0 µ

ij = 0 for all i ∈ Z with Lec 3
2021-10-26n ∤ i. This follows by writing i as i = k · n + r with k ∈ Z and r ∈ {1, . . . , n− 1} and

calculating
n−1∑
j=0

µij =
n−1∑
j=0

µ(kn+r)j =
n−1∑
j=0

µknj · µrj =
n−1∑
j=0

µrj = 0.

Example 1.15. (1) e2πi/n ∈ C is a good primitive n-th root of unity.

(2) µ = 3̄ ∈ Z/(8) is a primitive 2-nd root of unity, but it is not good, as 1̄ + 3̄ = 4̄ ̸= 0̄
shows.

The second example also demonstrates that our assumption in the previous algorithms
that µ2k−1

= −1 for a primitive 2k-th root of unity µ is really necessary.
The following proposition shows that for good roots µ, the reverse of the discrete

Fourier transform DFTµ exists and is up to a scalar given by another discrete Fourier
transform DFTµ−1 .

Proposition 1.16. Let µ ∈ R be a good primitive n-th root of unity and let a ∈ Rn.
Then

DFTµ−1(DFTµ(a)) = n · a,
where n denotes the sum of n ones in R.

Proof. The i-th component of DFTµ−1(DFTµ(a)) is

n−1∑
j=0

µ−ij âj =
n−1∑
j=0

µ−ij

n−1∑
k=0

µjkak =
n−1∑
k=0

ak

(
n−1∑
j=0

µ(k−i)j

)
= n · ai.

The next proposition shows that in some common situations, there are “many” good
n-th roots of unity.

Proposition 1.17.

(a) If R is an integral domain, then all primitive n-th roots of unity are good.

(b) Let R be a commutative ring with char(R) ̸= 2, µ ∈ R and n ∈ N>0. If n = 2k for
k ∈ N>0 and µ

n/2 = −1 (“halfway property”), then µ is a good primitive n-th root
of unity.

Proof. (a) Let µ ∈ R be a primitive n-th root of unity and 0 < i < n. Since 0 =
µin − 1 = (µi − 1)(

∑n−1
j=0 µ

ij) and R is an integral domain, it follows
∑n−1

j=0 µ
ij = 0.

(b) The halfway property directly implies µn = 1 and ord(µ) | 2k shows that ord(µ) = 2l

for some l ∈ N. Because µ2k−1
= −1 and −1 ̸= 1 as char(R) ̸= 2, it follows that µ

is a primitive n-th root of unity.
To establish that µ is good, we write i = r · 2k−s ∈ {1, . . . , n− 1} with r ∈ N odd
and s ∈ N>0. Since µ̃ := µi is a primitive 2s-th root of unity with the “halfway
property” and

∑n−1
j=0 µ

ij =
∑n−1

j=0 µ̃
j, it is sufficient to check the case i = 1:

n−1∑
j=0

µj =

n/2−1∑
j=0

(µj + µj+n/2︸ ︷︷ ︸
=−µj

) = 0.

1 Integer Arithmetic 8

For example, in C any primitive n-th root of unity µ is good. This makes sense
intuitively, as the points 1, µ, . . . , µn−1 form a regular polygon.

We can now use the discrete Fourier transform in order to calculate the product of
two polynomials.

Algorithm 1.18 (Polynomial multiplication with FFT).
Let R be a commutative ring in which 2 ∈ R is invertible.

Input: f, g ∈ R[x], deg f + deg g < 2k =: n, µ ∈ R such that µn/2 = −1.

Output: h = f · g.

(1) Compute f̂ := DFTµ(f) and ĝ := DFTµ(g) ∈ Rn using a Fast Fourier transform
(Algorithm 1.11).

(2) Calculate the component-wise product ĥ = f̂ · ĝ.

(3) Compute (h0, . . . , hn−1) :=
1
n
DFTµ−1(ĥ).

(4) Return h =
∑n−1

i=0 hix
i.

Proof (of correctness). That the algorithm computes the desired product is a direct con-
sequence of Proposition 1.16 and Proposition 1.17.

By Theorem 1.13, this algorithm requires O(n · log2(n)) ring operations.
We face the following problem: As n gets larger, computations with a n-th root of

unity will generally become harder. To solve this problem, we will work in a ring where
we always have a particular “nice” good root of unity. Namely, we consider the ring
R := Z/(m) with m := 2l + 1 for some l ∈ N. Thus by definition, 2̄l = −1, so 2̄ ∈ R is a
good 2l-th root of unity.

When we work in such a ring Z/(m) with m := 2l + 1, we always represent our
elements by their unique representative in {0, . . . ,m− 1}, which has a maximal length of
l+1. It is important that our algorithms return another representative in {0, . . . ,m− 1}.
A number x ≤ 22l can be reduced to a representative between 0 and m − 1 with O(l)
bit-operations:
Indeed, if x = 22l, then x̄ = −12 = 1̄, so the result is 1. Otherwise, we consider the
binary representation of x, take the first l bits from the “right side” and interpret them
as a new number r and interpret the remaining bits as another number y. In other words,
we write x = 2l · y + r with y, r < 2l. Because 2̄l = −1, x̄ is the same as r − y and this
subtraction requires O(l) bit-operations. Now r− y might be negative, but it is certainly
greater than −2l, so if it is negative, we may simply add 2l + 1 to it, in order to obtain
the desired representative between 0 and m− 1.

Proposition 1.19. Let R = Z/(m) with m = 2l + 1 for some l ∈ N. Then addition in
R and multiplication by 2̄i ∈ R for 0 ≤ i < 2l requires O(l) bit-operations.

Proof. For x, y ∈ {0, . . . ,m− 1}, the sum of representatives x+ y is computable in O(l)
and if that sum exceeds m, subtracting m also needs O(l) bit-operations. Together, this
requires O(l) bit-operations.
We first consider multiplication by 2i for 0 ≤ i < l, which amounts to shifting the binary
representation i places to the left. This requires O(l) + O(g(i)) = O(l) bit-operations,
where g denotes the cost of computing the starting address of the numbers.

1 Integer Arithmetic 9

The resulting number x can be at most 2l−1 · 2l = 22l−1, so the previous discussion shows
that it can be computed with O(l) bit-operations.
Finally, if i ≥ l, then 2i = 2l ·2i−l = −2i−l, so multiplying by 2i amounts to multiplying by
2i−l first and then negating the result. Since the first step requires O(l) bit-operations by
the above and negating the representative is just another subtraction, the claim follows.

Proposition 1.20. Let k, r ∈ N, r > 0, m := 22
k·r + 1, R := Z/(m) and µ = 2̄r ∈ R.

Then µ is a good primitive 2k+1-th root of unity and 2̄ ∈ R is invertible.

Proof. By definition, µ2k = −1, so Proposition 1.17 shows the first part of the claim. For
the second part, it suffices to notice that m ∤ 2 and in a finite ring, every element that is
not a zero divisor is necessarily a unit.

Using the above theory, we can now state another efficient algorithm that computes
the product of two natural numbers.

Algorithm 1.21 (Variant of the Schönhage-Strassen algorithm).

Input: x, y ∈ N.

Output: z = x · y.

(1) Choose k ∈ N minimal such that l(x), l(y) ≤ 22k.

(2) If k ≤ 3, compute z = x · y using grid multiplication (Algorithm 1.6).

(3) Set B := 22
k
, write x =

∑2k−1
i=0 xiB

i and y =
∑2k−1

i=0 yiB
i with xi, yi ∈ N<B.

(4) Set m := 24·2
k
+ 1, R := Z/(m) and µ = 2̄4 = 1̄6.

(5) Compute

x̂ := DFTµ

(
x̄0, . . . , x̄2k−1, 0, . . . , 0︸ ︷︷ ︸

2k zeros

)
, ŷ := DFTµ

(
ȳ0, . . . , ȳ2k−1, 0, . . . , 0︸ ︷︷ ︸

2k zeros

)
∈ R2k+1

.

(6) Compute the component-wise product ẑ := x̂ · ŷ ∈ R2k+1
by first taking the

product of representatives inN<m by a recursive call and then reducing the result
modulo m by subtracting high bits (just like in the proof of Proposition 1.19).

(7) Compute (z̄0, . . . , z̄2k+1−1) :=
1

2̄k+1DFTµ−1(ẑ) with zi ∈ N<m.

(8) Return z :=
∑2k+1−1

i=0 ziB
i.

Lec 4
2021-10-28

Proof (of correctness). We first note that the rewrite in step (3) is possible, because

B2k = (22
k

)2
k

= 22
k·2k = 22

2k

> x, y.

Furthermore, by Proposition 1.20, µ is a good 2k+1-th root of unity, so by Proposition 1.16,
we correctly compute the product z̄ = x̄ · ȳ ∈ R.

1 Integer Arithmetic 10

To see that also z = x · y in N, it is enough to notice that the l-th coefficient of x · y lies
in {0, . . . ,m− 1}: ∑

i+j=l

xiyj < 2k ·B2 = 2k · 22·2k = 2k+2k+1

< m.

Theorem 1.22. Algorithm 1.21 requires O(n · log2(n)4) bit-operations when applied to
x, y ∈ N with l(x), l(y) ≤ n.

Proof. Let l := 4 · 2k, so that m = 2l + 1 and consider

θ(k) := max
{
number of bit-operations required for x, y ∈ N : l(x), l(y) ≤ 22k

}
,

where we extend θ to R>0 by setting θ(x) := θ(⌊x⌋) for x ∈ R>0.
We start by analyzing the bit-operation costs for the different steps.

(1) max{l(x), l(y)} can be calculated with O(n) bit-operations and 22k = 4k can be
obtained from 4k−1 by shifting the representing bits two places to the left. Therefore,
we need at most O(n) + ⌈log4(n)⌉ · O(n) ≤ O(k · 22k) bit-operations.

(2) Since this step only runs for small numbers, it requires O(1) bit-operations.

(3) This step starts by dividing the binary representations of x and y into blocks of
size 2k. At most we need to perform n

2k
≤ 2k such splits for x and y, respectively.

Additionally, we might need to move the location of the split numbers in memory.
Because they have a length of at most 2k, this needs O(2k) bit-operations. In total,
this amounts to O(2k · 2k) = O(22k) bit-operations.

(4) To save m to memory, we need to set its first and (4 · 2k + 1)-st bit to 1, which is
certainly in O(4 · 2k + 1) = O(2k). Computing µ needs O(1) bit-operations.

(5) By Theorem 1.13, the Fast Fourier Transform (Algorithm 1.11) requires O(2k+1(k+
1)) ring operations, which are additions and multiplications by µi = 2̄4i with 0 ≤
i < 2k+1. Proposition 1.19 states that these ring operations correspond to O(2k)
bit-operations. In total, this amounts to O(k · 22k) bit-operations.

(6) We need to perform 2k+1 multiplications of numbers with a length of at most
4 · 2k + 1. By a previous discussion, reducing a number that is less than or equal
to 22l modulo m needs O(l) = O(2k) bit-operations. Thus in total, we perform
O(2k+1 · 2k) = O(22k) bit-operations to reduce all the results.
We now consider the recursive calls that are used to compute the products. Writing
k′ for the k occurring in the recursive calls, we have xi, yi < m, so l(xi), l(yi) ≤
4 · 2k = 2k+2 and thus 2k′ ≤ k+3. Since we make 2k+1 recursive calls, this amounts
to 2k+1 · θ(k+3

2
) bit-operations for the multiplications.

In total, step (6) requires 2k+1 · θ(k+3
2
) +O(22k) bit-operations.

(7) This step also requires O(k · 22k) bit-operations and the argument is similar to
that of step (5): By Theorem 1.13, computing DFTµ−1 requires O(2k+1(k+1)) ring
operations, which are additions and multiplications by µ−i = 2̄−4i with 0 ≤ i < 2k+1.
Division by 2̄k+1 is multiplication by 2̄2

k+3−k−1 and by Proposition 1.19, this takes
O(4 · 2k) = O(2k) bit-operations. Hence, step (7) requires O(22k) bit-operations.

1 Integer Arithmetic 11

(8) Since
a

b
<
a+ 1

b
≤ 2b

b+ 1

a+ 1

b
= 2

a+ 1

b+ 1
∀ a ∈ N, b ∈ N>0,

we have for j ≤ 2k+1:

j−1∑
i=0

ziB
i ≤ (m− 1)

j−1∑
i=0

Bi = 24·2
kBj − 1

B − 1
< 2 · 24·2kB

j

B
= 21+(4+j−1)2k = 21+(j+3)2k .

Hence the length of that partial sum is at most 1+(j+3)2k Because zjB
j starts at

the j·2k-th bit and l(zj) ≤ 4·2k, if we add that zjB
j to the partial sum, we effectively

add numbers of lengths 4 · 2k and 3 · 2k, which requires O(2k) bit-operations and
thus O(22k) in total.

We conclude that the following inequality holds for some constant C ∈ R:

θ(k) ≤ 2k+1θ

(
k + 3

2

)
+ C · k · 22k ∀ k ∈ R, k ≥ 4.

Consider

Λ(k) :=
θ(k)

22k
and Ω(k) := Λ(k + 3).

Then

Λ(k) ≤
2k+1θ(k+3

2
)

22k
+ C · k =

16 · θ(k+3
2
)

2k+3
+ C · k = 16 · Λ

(
k + 3

2

)
+ C · k ∀ k ≥ 4

and thus

Ω(k) = Λ(k + 3) ≤ 16 · Λ
(
k + 6

2

)
+ C · (k + 3) = 16 · Ω

(
k

2

)
+ C · (k + 3) ∀ k ≥ 1.

Claim: Λ(k) ≤ 16iΩ
(
k−3
2i

)
+ C · (k − 3) ·

∑i−1
j=0 8

j + 3 · C ·
∑i−1

j=0 16
j for all i ∈ N with

2i−1 ≤ k − 3, k ≥ 1.
Proof by induction on i: If i = 0, then Λ(k) ≤ Ω(k − 3).
i→ i+ 1: We calculate

Λ(k) ≤ 16iΩ

(
k − 3

2i

)
+ C · (k − 3) ·

i−1∑
j=0

8j + 3 · C ·
i−1∑
j=0

16j

≤ 16i
(
16 · Ω

(
k − 3

2i+1

)
+ C ·

(
k − 3

2i
+ 3

))
+ C · (k − 3) ·

i−1∑
j=0

8j + 3 · C ·
i−1∑
j=0

16j

= 16i+1 · Ω
(
k − 3

2i+1

)
+ C · (k − 3) ·

i∑
j=0

8j + 3 · C ·
i∑

j=0

16j.

This finishes the induction proof. Now let ν ∈ N be minimal, such that 2ν > k−3. Then

D := Ω(0) = Ω

(⌊
k − 3

2ν

⌋)
= Ω

(
k − 3

2ν

)
.

1 Integer Arithmetic 12

Because 2ν−1 ≤ k − 3, the claim implies

Λ(k) ≤ 16ν ·D + C · (k − 3)︸ ︷︷ ︸
<2ν

8ν − 1

7
+ 3C

16ν − 1

15
∈ O(16ν).

Since ν − 1 ≤ log2(k − 3), we obtain

Λ(k) ∈ O(16log2(k−3)+1) = O(24·log2(k−3)) = O((k − 3)4),

so θ(k) = 22k ·Λ(k) ∈ O(22k ·(k−3)4). Finally, because 22(k−1) < n, it follows k−1 < log2(n)
2

and we conclude θ(k) ∈ O(n · (log2(n))4).
Lec 5
2021-11-02We mention some modern algorithms that multiply two natural numbers of size ≤ n:

• Schönhage-Strassen (1971): O(n · log2(n) · log2(log2(n))).

• Fürer’s algorithm (2001): Asymptotically faster.

• Murrey, von der Hoeven (2021): O(n · log2(n)).

1.3 Division with Remainder and Greatest Common Divisors

We start with the straightforward algorithm and as before assume that our numbers are
represented in binary.

Algorithm 1.23 (Division with remainder).

Input: b :=
∑n−1

i=0 bi2
i, a :=

∑n+m−1
i=0 ai2

i with ai, bi ∈ {0, 1}, bn−1 = 1.

Output: q, r ∈ N, such that a = q · b+ r, 0 ≤ r < b.

(1) Initialize r := a, q := 0.

(2) For i = m,m− 1, . . . , 1, 0:
If r ≥ 2i · b: r := r − 2ib, q := q + 2i

Proof (of correctness). It is clear that we have a = q · b+ r after every iteration.
Furthermore, we have

0 ≤ r = a < 2n+m = 2m+1 · 2n−1 ≤ 2m+1 · b

after the initialization step, so by definition of step (2), we see that 0 ≤ r < 2j · b is true
after iteration step i = j. Therefore, the algorithm terminates when 0 ≤ r < 20b = b.

Theorem 1.24. Algorithm 1.23 requires O(n(m+ 1)) bit-operations.

Proof. We iterate (m+1)-times and perform a multiplication by 2i (bit-shift), a compar-
ison and some additions, which are linear in the size n+m, so the claim follows.

Integral domains that have a division with remainder are called Euclidean rings.
Examples include Z (with grading given by the absolute value), the polynomial ring K[x]
over a field K (with the degree as the grading) and the Gaussian integers Z[i] ⊂ C (with

1 Integer Arithmetic 13

the square of the absolute value as the grading). Note that the remainder r is generally
not unique, not even in Z, as the following example with a = 3 and b = 2 shows:

1 · 2 + 1 = 3 = 2 · 2− 1.

Another example is given by a = x2 ∈ K[x] and b = x+ 1 ∈ K[x]:

x(x+ 1)− x = x2 = (x− 1)(x+ 1) + 1

In the case of Z, we can make the remainder r unique by demanding that 0 ≤ r < b
as we did in the algorithm. Note that we may alternatively ask for − b

2
< r ≤ b

2
and

Algorithm 1.23 can be easily modified to compute such a remainder r, because if we have
a = qb+ r with b

2
< r < b, then r′ := r − b satisfies a = (q + 1)b+ r′ and − b

2
< r′ < 0.

It is clear that Algorithm 1.23 extends to a, b ∈ Z, b ̸= 0 in a straightforward way.

In fact, division with remainder can be reduced to multiplication. More precisely: If
two numbers of size ≤ n can be multiplied in M(n) bit-operations, then division with
remainder is possible in O(M(n)) bit-operations.
We also mention that Jebelean’s Algorithm (1997) with a runtime of O(nlog2(3)) is of prac-
tical relevance.

The well-known Euclidean algorithm works in any Euclidean ring, but we just state
it for Z and for simplicity restrict to the natural numbers. It is used to calculate the
greatest common divisor gcd(a, b) of two elements a, b in a Euclidean ring.
Note that the greatest common divisor is only unique up to multiplication with a unit.
For example, in Z, it is determined up to sign.

Algorithm 1.25 (Euclidean Algorithm).

Input: a, b ∈ N.

Output: gcd(a, b).

(1) Initialize r0 := a, r1 := b.

(2) For i = 1, 2, 3, . . .:

(3) If ri = 0: Return gcd(a, b) = |ri−1|.

(4) Compute division with remainder of ri by ri−1 using (a slightly modified
version of) Algorithm 1.23: ri−1 = qiri + ri+1 with qi ∈ Z, ri+1 ∈ Z, |ri+1| ≤
|ri|
2
.

Proof (of correctness). Because the ri are always whole numbers and their absolute values
are strictly decreasing, the algorithm must terminate. By step (4) we have for x ∈ Z:

x | ri−1 and x | ri ⇐⇒ x | ri+1 and x | ri.

Therefore, gcd(ri−1, ri) = gcd(ri, ri+1), so we conclude

gcd(a, b) = gcd(r0, r1) = gcd(r1, r2) = . . . = gcd(rk, 0) = |rk|,

where k is such that rk+1 = 0.

1 Integer Arithmetic 14

Theorem 1.26. For two integers of lengths n andm respectively, Algorithm 1.25 requires
O(n ·m) bit-operations.

Proof. Let l(a) = n, l(b) = m. If a < b, the first division with remainder will result in
r2 = a, thus we may assume that a ≥ b.
Set ni = l(ri); in particular, we have n0 = n and n1 = m. For i ≥ 2, we have ni ≤ ni−1−1,
so by Theorem 1.24, the number of required bit-operations is bounded from above by

C ·
k∑

i=1

ni · (ni−1 − ni + 1)︸ ︷︷ ︸
=:σ(n0,...,nk)

,

where k denotes the number of divisions with remainder (i.e. rk+1 = 0) and C is a
constant.
We now consider the special case where we have ni = ni−1− 1 for all i ≥ 2. In that case,
it follows ni = n1 − i+ 1 = m− i+ 1 for all i ≥ 1, implying k = m and we see that the
assertion holds for this special case:

σ(n1, . . . , nk) = n1(n0 − n1 + 1)+
m∑
i=2

(m− i+ 1) ·2 = m(n−m+ 1)+m(m− 1) = m ·n.

Claim: The special case is the “worst case” of the algorithm; that is, it provides an upper
bound for σ(n0, . . . , nk).
To prove this, let n0 ≥ n1 > n2 > · · · > nk be arbitrary. We claim that we can obtain
the special case from this sequence by successively inserting numbers into the “gaps”.
Indeed, if there is a j ∈ N with nj−1 > nj + 1, we may insert a natural number s with
nj < s < nj−1 between nj−1 and nj into the sequence. Because we have

σ(n0, . . . , nj−1, s, nj, . . . , nk)− σ(n0, . . . , nk)

=s(nj−1 − s+ 1) + nj(s− nj + 1)− nj(nj−1 − nj + 1)

=s+ (nj−1 − s)s+ nj(s− nj−1) = s+ (nj−1 − s)(s− nj) > 0,

this can only increase the number of required bit-operations.

With its essentially quadratic complexity, computing greatest common divisors is a
rather cheap operation.

Lec 6
2021-11-04Bezout’s identity states that for any two integers a, b ∈ Z, there exist (not necessarily

unique) s, t ∈ Z, such that as+ bt = gcd(a, b).
We now discuss a slight extension of Algorithm 1.25, which computes such s, t in addition
to the greatest common divisor.

Algorithm 1.27 (Extended Euclidean Algorithm).

Input: a, b ∈ N.

Output: d = gcd(a, b) and s, t ∈ Z such that d = sa+ tb.

(1) Initialize r0 := a, r1 := b, s0 := 1, t0 := 0, s1 := 0 and t1 := 1.

(2) For i = 1, 2, 3, . . .:

1 Integer Arithmetic 15

(3) If ri = 0: Return d := |ri−1|, s := sign(ri−1)si−1 and t := sign(ri−1)ti−1.

(4) Compute division with remainder of ri−1 by ri using (a slightly modified
version of) Algorithm 1.23: ri−1 = qiri + ri+1 with qi ∈ Z, ri+1 ∈ Z, |ri+1| ≤
|ri|
2
.

(5) Set si+1 := si−1 − qisi and ti+1 := ti−1 − qiti.

Proof (of correctness). The algorithm computes gcd(a, b) correctly, because this is true
for Algorithm 1.25. Furthermore, it is easy to check that throughout the algorithm, we
always have ri = sia+ tib.

One can show that Algorithm 1.27 requires O(n ·m) bit-operations when applied to
two integers of lengths n and m, respectively.

As an application, the algorithm can be used to compute the inverse of x̄ ∈ Z/(m),
if the representative x ∈ Z is coprime to m (i.e. gcd(m,x) = 1), because the algorithm
then yields s, t ∈ N, such that 1 = sx+ tm and therefore sx = 1 ∈ Z/(m).

1.4 Primality Testing

We write P ⊂ N for the set of prime numbers. Our goal is to determine whether a given
n ∈ N is a prime number.

The most straightforward algorithm is to check whether m | n for any m ∈ N with
2 ≤ m2 ≤ n. However, this requires O(

√
n) divisions with remainder and because

n = Θ(2l(n)), this is “almost exponential” in the length l(n).
As a refinement, one can only check for the m ∈ P with m2 ≤ n. Since there are

approximately
√
n

log2(
√
n)

prime numbers that are smaller than
√
n, this does not improve

the complexity by much.

We recall some results on arithmetic in Z/(m):

• For p ∈ P, Fp = Z/(p) is a field and its unit group F×
p is cyclic; i.e. there exists

u ∈ F×
p , such that F×

p = ⟨u⟩ = {ui : i ∈ Z}, ord(u) = p− 1.

• By Fermat’s little theorem, for any finite group G and u ∈ G, we have u|G| = 1.
In particular, this means that zp−1 ≡ 1 mod p for z ∈ Z and p ∈ P with p ∤ z.

• Any m ∈ N>1 can be discomposed into its prime factorization: m =
∏r

i=1 p
ei
i with

the pi pairwise distinct prime numbers and exponents ei ∈ N>0. Then the Chinese
remainder theorem states that

Z/(m)→ Z/(pe11)⊕ · · · ⊕ Z/(perr), x 7→ (x mod pe11 , . . . , x mod perr)

is a ring homomorphism and thus (Z/(m))× ∼= (Z/(pe11))× × · · · × (Z/(perr))× as
groups.

The following theorem describes the unit group (Z/(pe))×.

Theorem 1.28. Let p ∈ P \ {2} and e ∈ N>0. Then (Z/(pe))× is cyclic of order
(p− 1)pe−1; i.e.

(Z/(pe))× ∼= Z/
(
(p− 1)pe−1

)
.

1 Integer Arithmetic 16

Proof. There are pe numbers between 1 and pe and pe−1 of those are divisible by p, so
ord
(
(Z/(pe))×

)
= pe− pe−1. We already know that the statement is true for e = 1, so let

e > 1.
Since F×

p is cyclic, there exists z ∈ Z, such that zi ≡ 1 mod p for i ∈ Z if and only if

(p− 1) | i. Consider the element a := zp
e−1

+ peZ ∈ (Z/(pe))×.
Claim: ord(a) = p− 1.
Using Fermat’s little theorem, we first observe

ap−1 = z(p−1)pe−1

+ peZ = 1 ∈ (Z/(pe))×,

so ord(a) | p− 1. Now let i ∈ N>0 with ai = 1 be given. Then we see that

zip
e−1 ≡ 1 mod pe =⇒ zip

e−1 ≡ 1 mod p =⇒ (p− 1) | i · pe−1 =⇒ (p− 1) | i,

implying ord(a) = p− 1.
Claim: The element b := 1 + p+ peZ ∈ (Z/(ep))× satisfies ord(b) = pe−1.

To prove this, we will first show that (1 + p)p
k−1

≡ 1 + pk mod pk+1 by induction on k:

k = 1: For k = 1, we get the equality 1 + p = 1 + p.

k → k + 1: By the inductive hypothesis, there exists x ∈ Z, such that (1 + p)p
k−1

=
1 + pk + x · pk+1, so we calculate

(1 + p)p
k

=
(
1 + pk + x · pk+1

)p
=

p∑
i=0

(
p

i

)(
1 + pk

)p−i(
xpk+1

)i
=
(
1 + pk

)p
+

p∑
i=1

(
p

i

)(
1 + pk

)p−i(
xpk+1

)i
≡
(
1 + pk

)p
mod pk+2

=

p∑
i=0

(
p

i

)
pik ≡ 1 + pk+1 mod pk+2.

Plugging in k = e and k = e− 1 yields

(1 + p)p
e−1

≡ 1 + pe mod pe+1 ≡ 1 mod pe =⇒ ord(b) | pe−1

(1 + p)p
e−2

≡ 1 + pe−1 mod pe ̸≡ 1 mod pe =⇒ ord(b) ∤ pe−2,

implying ord(b) = pe−1.
Claim: We have ord(a · b) = (p− 1)pe−1; i.e. a · b generates (Z/(ep))×.
By Fermat’s little theorem, we have (a · b)p

e−1(p−1) = 1, so ord(a · b) | pe−1(p− 1). On the
other hand, for i ∈ N>0 with (ab)i = 1, we observe

1 = (ab)i(p−1) = ai(p−1)bi(p−1) = 1 · bi(p−1).

Because ord(b) = pe−1, this means that pe−1 | i(p− 1), so pe−1 | i. We conclude

1 = (ab)p
e−1i = ap

e−1i =⇒ (p− 1) | pe−1i =⇒ (p− 1) | i =⇒ (p− 1)pe−1 | i.

One can show that for e ≥ 3, it holds (Z/(2e))× ∼= Z/(2)× Z/(2e−2).

1 Integer Arithmetic 17

1.4.1 The Fermat Test
Lec 7
2021-11-09By Fermat’s little theorem, any prime number n ∈ P satisfies an−1 ≡ 1 mod n for all

a ∈ {1, . . . , n− 1}. In fact, the other direction is also correct; any n ∈ N>1 with this
property is a prime number, because if a ∈ {1, . . . , n− 1} with a | n satisfies an−1 ≡ 1
mod n, then a | 1 and thus a = 1.
By checking the above condition for all numbers a ∈ {1, . . . , n− 1}, we can thus determine
whether a given number is prime or not. However, checking all such a is very inefficient.
Instead, we draw random numbers a ∈ {1, . . . , n− 1} and check if the condition is true
for each of those. If one of the numbers fails the test, we know that n is not prime; if all
pass, we can at least suspect that n is prime and by testing more and more numbers, we
can be more confident in the obtained result. This procedure gives rise to the following
randomized algorithm (Monte Carlo Algorithm).

Algorithm 1.29 (Fermat Test).

Input: n ∈ N>1 odd

Output: “n /∈ P” or “probably n ∈ P”

(1) Choose a ∈ {1, . . . , n− 1} at random.

(2) Compute b := an−1 mod n.

(3) Return

{
“probably n ∈ P” b ≡ 1 mod n

“n /∈ P” otherwise

Of course, when implementing such an algorithm on a computer, one would exclude
1 from the range of random numbers. To obtain a good complexity for Algorithm 1.29,
we need to be able to quickly compute powers of a given element.

Algorithm 1.30 (Fast exponential).
Let M be a monoid.

Input: a ∈M , e =
∑n−1

i=0 ei2
i ∈ N with ei ∈ {0, 1}

Output: y = ae ∈M

(1) Initiate y := 1 ∈M , b := a.

(2) For i = 0, . . . , n− 1:

(3) If ei = 1: y := y · b

(4) b := b2.

Example 1.31. We have a10 = a8+2 =
(
(a2)

2
)2
· a2 for any element a in a monoid.

Algorithm 1.30 requires O(n) operations in M . With the naive multiplication al-
gorithm, we need O(l(n)2) bit-operations for multiplying two numbers in M = Z/(n).
Therefore, Algorithm 1.29 requires O(l(n)3) bit-operations.

Algorithm 1.29 will never produce false negatives but there can be false positives and
in fact quite a lot of those, as the following example shows.

1 Integer Arithmetic 18

Example 1.32. (a) Let n := 561 = 3 · 11 · 17 and a ∈ {1, . . . , n− 1} coprime to n (i.e.
gcd(a, n) = 1). The number n is chosen in such a way that p− 1 divides n− 1 for
p a prime factor of n, so by Fermat’s little theorem, we have

an−1 = (a2)280 ≡ 1 mod 3

an−1 = (a10)56 ≡ 1 mod 11

an−1 = (a16)35 ≡ 1 mod 17,

implying an−1 ≡ 1 mod n. Since this holds true for every coprime number a ∈
{1, . . . , n− 1}, there are at least (1− 1

3
− 1

11
− 1

17
) · 560 > 289 - so more than half -

false positives (the precise number of coprimes is 320).

(b) The number 2207 · 6617 · 15443 turns out to have false positives in 99.9% of the
cases.

The previous example shows that in bad cases, the Fermat test will probably return
a wrong result. To capture which numbers constitute the bad cases, we introduce some
terminology.

Definition 1.33. Let n ∈ N>1 odd and a ∈ {1, . . . , n− 1}.
(a) n is called a pseudo prime to base a if an−1 ≡ 1 mod n.

(b) Otherwise, a is called a (Fermat) witness of compositeness of n.

(c) If n is composite and an−1 ≡ 1 mod n for all coprime a ∈ {1, . . . , n− 1} then n is
called a Carmichael number.

By definition, a pseudo prime to base a is just a natural number that passes the Fermat
test w.r.t. a and the problematic numbers from the previous example are the Carmichael
numbers. One can show that there exist infinitely many Carmichael numbers.
Note that because a number a ∈ {1, . . . , n− 1} that is not coprime to n is not invertible
in Z/(n), it is always a witness of compositeness of n.

Proposition 1.34.

(a) Let n ∈ N be an odd composite number that is not a Carmichael number. Then
more than n−1

2
numbers from {1, . . . , n− 1} are witnesses of compositeness of n.

(b) Every Carmichael number n is square-free (i.e. p2 ∤ n for any p ∈ P).
Proof. (a) Consider the group homomorphism

Ψ: G := (Z/(n))× → (Z/(n))×, a 7→ an−1

By hypothesis, the image im(Ψ) contains {1} as a proper subset. From the homo-
morphism theorem it follows that

|kerΨ| = |G|
|im(ψ)|

≤ |G|
2

<
n− 1

2
,

so at least n− 1− |kerΨ| > n−1
2

numbers have witnesses.

(b) Suppose that n is not square-free; i.e. n = pe · r with p ∈ P, e ≥ 2, r ∈ N, p ∤ r.
By assumption, p and r are odd, so Theorem 1.28 yields the existence of x ∈ Z
with xp ≡ 1 mod pe and x ̸≡ 1 mod pe. By the Chinese remainder theorem, there
is a ∈ {1, . . . , n− 1}, such that a ≡ x mod pe and a ≡ 1 mod r. Thus ap ≡ 1
mod n and a ̸≡ 1 mod n, so an ≡ 1 mod n. We conclude an−1 ̸≡ 1 mod n,
showing that n is not Carmichael number.

1 Integer Arithmetic 19

1.4.2 The Miller-Rabin Test

To solve the problem of Carmichael numbers, we introduce a refinement of Algorithm 1.29,
which again is a Monte Carlo algorithm. The algorithm is based on the following propo-
sition.

Proposition 1.35. Let p ∈ P be an odd prime and a ∈ {1, . . . , p− 1}. Writing p− 1 =
m · 2k with m ∈ N odd, we have

am ≡ 1 mod p or ∃ i ∈ {0, . . . , k − 1} : am·2i ≡ −1 mod p.

Proof. Assume am ̸≡ 1 mod p and let i ∈ N be maximal such that am·2i ̸≡ 1 mod p.
By Fermat’s little theorem, we have i ∈ {1, . . . , k − 1}. This shows that b := am·2i ∈ Fp

satisfies b ̸= 1 and b2 = 1, so b is a zero of the polynomial x2 − 1 ∈ Fp[x] and it follows
b = −1 ∈ Fp.

Algorithm 1.36 (Miller-Rabin Test).

Input: n ∈ N>1 odd

Output: “n /∈ P” or “probably n ∈ P”

(1) Write n− 1 = m · 2k with m ∈ N odd.

(2) Choose a ∈ {1, . . . , n− 1} at random.

(3) Compute b := am mod n.

(4) If b ≡ 1 mod n or b ≡ −1 mod n: Return “probably n ∈ P”.

(5) For i = 1, . . . , k − 1:

(6) b := b2 mod n.

(7) If b ≡ −1 mod n: Return “probably n ∈ P”.

(8) Return “n /∈ P”.

Definition 1.37. Let n ∈ N>1 be an odd number and a ∈ {1, . . . , n− 1}.

(a) n is called a strong pseudo prime to base a if Proposition 1.35 holds for p = n;
i.e. if Algorithm 1.36 returns “probably n ∈ P” when a was the random number
drawn.

(b) Otherwise, a is called a strong witness of compositeness of n.

By definition, every strong pseudo prime is a pseudo prime and every witness is a
strong witness. The hope that there are significantly less strong pseudo primes than
pseudo primes is confirmed by the following example.

Example 1.38. Let n ∈ N>1 be an odd composite number.

(a) If n < 2047, then 2 is a strong witness for n.

(b) If n < 1, 373, 653, then 2 or 3 is a strong witness of compositeness of n.

1 Integer Arithmetic 20

Lec 8
2021-11-11Because we need O(l(n)) multiplications in Z/(n), Algorithm 1.36 requires O(l(n)3)

bit-operations in total, just like Algorithm 1.29. And just like that algorithm, it might
produce false positives but never false negatives. The following theorem shows that there
is no analogous concept to Carmichael numbers for the Miller-Rabin test, demonstrating
that it constitutes a significant improvement over the Fermat test.

Theorem 1.39. If n ∈ N>1 is an odd composite number, then more than half of all
numbers in {1, . . . , n− 1} are strong witnesses.

Proof. If n is not be Carmichael number, then Proposition 1.34 shows that more than
half of those numbers are witnesses and thus also strong witnesses.
Therefore, we may assume that n is a Carmichael number; that is, for all coprime a ∈
{1, . . . , n− 1} we have a2

k·m ≡ 1 mod n, where n − 1 = 2k ·m with m ∈ N odd. From
Proposition 1.34 it follows that n is square-free, so it can be written as n = p · r with
p ∈ P, p ∤ r and r ≥ 3.
Define j ∈ N minimal such that a2

j ·m ≡ 1 mod p for all a ∈ {1, . . . , n− 1} that are
coprime to n. Clearly, j ≤ k and we observe that j = 0 is impossible, as it would imply
1 ≡ (n− 1)m ≡ (−1)m mod p, which is not true since m is odd.
Therefore, we have j ∈ {1, . . . , k} and we consider the subgroup

H :=
{
x ∈ (Z/(n))× : x2

j−1·m = ±1
}
⊂ (Z/(n))× =: G.

Claim 1: Any a ∈ {1, . . . , n− 1} coprime to n with a ∈ G \H is a strong witness.
Since a /∈ H, we have a2

i·m ̸≡ ±1 mod n for 0 ≤ i < j. If j ≤ i ≤ k − 1, then a2
i·m ≡ 1

mod p; that is, p | a2im − 1, so p ∤ a2im + 1 and we conclude a2
i·m ̸≡ −1 mod n. This

shows that a is a strong witness.
Claim 2: H is a proper subgroup of G.
By minimality of j, there exists x ∈ {1, . . . , n− 1}, such that x is coprime to n and
x2

j−1·m ̸≡ 1 mod p. By the Chinese remainder theorem, there is a ∈ {1, . . . , n− 1} with
a ≡ x mod p and a ≡ 1 mod r. Therefore a2

j−1·m ̸≡ 1 mod p but a2
j−1·m ≡ 1 mod r,

so a2
j−1·m ̸≡ ±1 and a /∈ H.

Because every number that is not coprime to n is a strong witness, Claim 1 and Claim 2
imply that the number of strong witnesses in {1, . . . , n− 1} is at least

n− 1− |H| ≥ n− 1− |G|
2

> n− 1− n− 1

2
=
n− 1

2
.

In fact, by refining the previous argument, one can show that more than 3
4
of all

numbers are strong witnesses.
The theorem means that by iterating Algorithm 1.36, the probability of a false positive
decreases exponentially (assuming the random number generation is independent).
It is also interesting to mention that one can define a deterministic variant of Algo-
rithm 1.36 with running-time O(l(n)5) if the generalized Riemann Hypothesis is true.

1.4.3 The AKS-test

We now study a deterministic primality test algorithm with polynomial running-time. It
was proposed in 2004 by Agrawal, Kayal, Saxena in “PRIMES is in P”.

1 Integer Arithmetic 21

For a commutative ring R whose characterstic p := char(R) ∈ P is a prime number,
the ring homomorphism

R→ R, a 7→ ap

is called Frobenius homomorphism.
That this is indeed additive follows from the calculation

(a+ b)p =

p∑
i=0

(
p

i

)
aibp−i = ap + bp ∀ a, b ∈ R.

Proposition 1.40. For any polynomial f ∈ Z[x]/(p), it holds f p = f(xp).
In particular, for p ∈ P, a ∈ Z and r ∈ N>0, we have

(x+ a)p = xp + a ∈ Z[x]/(p)

and
(x+ a)p = xp + a ∈ Z[x]/(xr − 1, p). (∗)

Proof. Write f =
∑n

i=0 aix
i ∈ Fp[x] ∼= Z[x]/(p). Because the Frobenius homomorphism

is additive, we have (
∑n

i=0 aix
i)
p
=
∑n

i=0 a
p
ix

ip ∈ Z[x]/(p). Fermat’s little theorem implies
ap = ap−1 · a = a ∈ Fp for any a ∈ Fp, and applying the injective ring homomorphism
Fp ↪→ Fp[x] ∼= Z[x]/(p) to this equation yields ap = a ∈ Z[x]/(p). This implies the first
claim. The other equations follow by considering the polynomial f = x+ a and by using
the homomorphism theorem

(Z[x]/(p))/((xr − 1)/(p)) ∼= Z[x]/(xr − 1, p).

The main motivation for considering the second equation instead of the first one is
that it makes computations more feasible. Indeed, to check if n ∈ N satisfies equation
(∗), we need O(l(n)) multiplications in Z[x]/(xr − 1, n) by Algorithm 1.30. Elements in
this ring are represented by polynomials of degree smaller than r and with coefficients in
N<n. Therefore, multiplying two polynomials requires O(r2) multiplications and addi-
tions in Z/(n), amounting to O(r2l(n)) multiplications. If we use the naive multiplication
algorithm (Algorithm 1.6), this requires O(r2l(n)3) bit-operations.
After applying these operations, one has to reduce the resulting polynomial modulo xr−1.
Denote the coefficients of that polynomial by ai. Because xr+k ≡ xk mod (xr − 1) for
all k ∈ N, one needs to add the “higher part” ar+k to the “lower part” ak for each
k ∈ {0, . . . , r − 1}, which requires r operations in Z/(n), so O(rl(n)2) bit-operations.
We conclude that the total number of bit-operations required is O(r2l(n)3). Lec 9

2021-11-16
Algorithm 1.41 (Test for perfect power).

Input: n ∈ N>1.

Output: m, e ∈ N>1 with n = me or “n is not a perfect power”.

(1) For e = 2, . . . , ⌊log2(n)⌋:

(2) Set m1 := 2, m2 := n.

(3) While m1 ≤ m2:

(4) Set m := ⌊m1+m2

2
⌋.

1 Integer Arithmetic 22

(5) If me = n: Return m, e.

(6) If me > n: Set m2 := m− 1.
Else: Set m1 := m+ 1.

(7) Return “n is not a perfect power”.

Proof (of correctness). The largest e ∈ N for which there can existm ∈ N>1 with n = me

is ⌊log2(n)⌋. Therefore, it is sufficient to search for m = e
√
n in the interval [2, n]. By

continuously bisecting this interval (i.e. performing a binary search for e
√
n), we can find

e
√
n or conclude that it is not a whole number.

There is no point in using Algorithm 1.30 in this algorithm, because we need to com-
pute all the powers me throughout the algorithm anyway. Instead, we use the naive
method me = m · me−1 to obtain me. By stopping the calculation as soon as me′ > n
for some e′ ≤ e, we always multiply numbers of length at most l(n) and since we need at
most log2(l(n)) multiplications, computingme requiresO(log2(l(n))·l(n)

2) bit-operations.
Because both the while and for loop are run log2(n) = O(l(n)) times, this amounts to
O(l(n)4 · log2(l(n))) bit-operations for the whole algorithm.

Using this algorithm as a subroutine, we may now state the AKS-test and prove that
it always gives the correct result.

Algorithm 1.42 (AKS primality test).

Input: n ∈ N>1 of length l := ⌊log2(n)⌋+ 1.

Output: “n ∈ P” or “n /∈ P”.

(1) Use Algorithm 1.41 to determine whether n is a perfect power, and if so, return
“n /∈ P”.

(2) Find r ∈ N>1 minimal, such that r | n or ni ̸≡ 1 mod r for all i ∈ {1, . . . , l2}.

(3) If r = n: Return “n ∈ P”.

(4) If r | n: Return “n /∈ P”.

(5) For a = 1, 2, . . . , ⌊
√
rl⌋:

If (x+ a)n ̸≡ xn + a mod (n, xr − 1): Return “n /∈ P”.

(6) Return “n ∈ P”.

The proof that the algorithm always gives the correct result is rather involved. It
requires the following two propositions.

Proposition 1.43. For r ∈ N>1 and p ∈ P, let

I(r, p) := {(m, f) ∈ N× Fp[x] : f(x)
m ≡ f(xm) mod (xr − 1)} ⊂ N× Fp[x].

Then the following statements hold true:

(a) If (m, f), (m′, f) ∈ I(r, p), then (m ·m′, f) ∈ I(r, p).

(b) If (m, f), (m, g) ∈ I(r, p), then (m, f · g) ∈ I(r, p).

1 Integer Arithmetic 23

(c) If (p ·m, f) ∈ I(r, p) and p ∤ r, then (m, f) ∈ I(r, p).

Proof. (a) We have

f(x)mm′
= (f(x)m)m

′
≡ f(xm)m

′
mod (xr − 1),

and by substituting xm for x in the equation f(x)m
′ ≡ f(xm

′
) mod (xr − 1), it

follows
f(xm)m

′
≡ f

(
xmm′

)
mod (xrm − 1).

Since (xr)m − 1 =
(∑m−1

i=0 xri
)
· (xr − 1) and thus (xr − 1) | (xmr − 1), we conclude

f(xm)m
′
≡ f

(
xmm′)

mod (xr − 1).

(b) This follows from the calculation

(f · g)(x)m = f(x)mg(x)m ≡ f(xm)g(xm) = (f · g)(xm) mod (xr − 1).

(c) By assumption and Proposition 1.40, we have

(f(x)m)p = f(x)mp ≡ f(xmp) = f(xm)p mod (xr − 1),

so xr − 1 | (f(x)m)p− f(xm)p and as the Frobenius homomorphism is a ring homo-
morphism, this implies xr − 1 | (f(x)m − f(xm))p. Since p ∤ r, xr − 1 is square-free
and it follows that (xr − 1) | f(x)m−f(xm); that is, f(x)m ≡ f(xm) mod (xr − 1).

Proposition 1.44. For all n ∈ N>1, we have
(
2n+1
n

)
> 2n+1.

Proof. We prove the assertion by induction. For n = 2, we calculate
(
5
2

)
= 10 > 8 = 23

and the inductive step is(
2n+ 3

n+ 1

)
=

(
2n+ 2

n+ 1

)
+

(
2n+ 2

n

)
=

(
2n+ 1

n+ 1

)
+

(
2n+ 1

n

)
+

(
2n+ 1

n

)
+

(
2n+ 1

n− 1

)
> 2 ·

(
2n+ 1

n

)
> 2n+2.

Proposition 1.45. Let n ∈ N>1 be a natural number of length l := ⌊log2(n)⌋+1, which
is not a perfect power (i.e. for all m, e ∈ N>1, we have n ̸= me). If r ∈ N>1 is chosen
minimal such that ni ̸≡ 1 mod r for all i ∈ {1, . . . , l2} and if s ∤ n for all s ∈ {2, . . . , r}
and for all a ∈ {1, . . . , ⌊

√
rl⌋}, we have (x+ a)n ≡ xn + a mod (n, xr − 1), then n is a

prime number.

Proof. First note that if all prime divisors p of n satisfied p ≡ 1 mod r, then we would
have n ≡ 1 mod r, contradicting the assumption. Therefore, there exists p ∈ P with
p | n and p ̸≡ 1 mod r. Because all prime divisors of n are larger than r, it follows p > r,
gcd(n, r) = 1 and gcd(p, r) = 1.
Let n = m · p for some m ∈ N and observe that gcd(m, r) = 1. Consider

I := I(r, p) = {(m, f) ∈ N× Fp[x] : f(x)
m ≡ f(xm) mod (xr − 1)} ⊂ N× Fp[x].

1 Integer Arithmetic 24

from Proposition 1.43 and

G := ⟨n, p⟩ = ⟨m, p⟩ ⊂ (Z/(r))×.

Notice that
g := |G| satisfies l2 < g < r. (1)

Moreover, with k := ⌊
√
rl⌋ ∈ N, we have

(x+ a)n = xn + a ∈ Z[x]/(n, xr − 1) ∼= (Z[x]/(n))/(xr − 1)

for all a ∈ {1, . . . , k}, so applying the ring homomorphism Z[x]/(n)↠ Z[x]/(p) ∼= Fp[x]
yields (x+ a)n = xn + a ∈ Fp[x]/(x

r − 1); i.e. (n, x+ a) ∈ I.
Proposition 1.43 shows that (m,x+ a) ∈ I for all a ∈ {0, . . . , k} (the case a = 0 is

clear) and since (p, x + a) ∈ I by Proposition 1.40, we conclude that (psmt, x+ a) ∈ I
for arbitrary a ∈ {0, . . . , k} and s, t ∈ N (the case s = t = 0 is clear).
For e = (e0, . . . , ek) ∈ Nk+1, consider

fe :=
k∏

a=0

(x+ a)ea ∈ Fp[x]

and notice that (psmt, fe) ∈ I by Proposition 1.43; that is,

fe(x)
psmt

= fe(x
psmt

) ∈ Fp[x]/(x
r − 1).

There is a finite field Fq ⊇ Fp which contains a primitive r-th root of unity ζ ∈ Fq and Lec 10
2021-11-18as r ∤ p− 1, it follows that ζ /∈ Fp. Since the ring homomophism

Fp[x] Fq[x] Fq

evalζ

descends to Fp[x]/(x
r − 1), we conclude that

fe(ζ)
psmt

= fe

(
ζp

smt
)
∈ Fq ∀ s, t ∈ N. (2)

Now consider the subgroup

H := ⟨ζ + a | a ∈ {0, . . . , k}⟩ =
{
fe(ζ) | e ∈ Nk+1

}
⊂ Fq

×,

the set

T :=

{
(e0, . . . , ek) ∈ Nk+1 :

k∑
a=0

ea < g

}
and the map

Φ: T → H, e 7→ fe(ζ).

We claim that Φ is injective.
For e, ê ∈ T with fe(ζ) = fê(ζ), we have

fe

(
ζp

smt
)

(2)
= fe(ζ)

psmt

= fê(ζ)
psmt

= fê

(
ζp

smt
)
∀ s, t ∈ N

and because G = ⟨m, p⟩, the polynomial fe − fê ∈ Fp[x] has g distinct roots (because ζ
is primitive). But deg(fe − fê) < g, so fe = fê. Because

k = ⌊
√
rl⌋ ≤

√
rl

(1)
<
√
r
2
= r < p,

1 Integer Arithmetic 25

the equivalence classes of two distinct elements of {0, . . . , k} are different, and we conclude
e = ê as otherwise fe and fê would have at least one root with different multiplicities.
Now let

M :=
{
(z0, . . . , zk) ∈ {1, . . . , g + k}k+1 : zi < zi+1 ∀ i ∈ {0, . . . , k − 1}

}
.

Since any (z0, . . . , zk) ∈M (with z−1 := 0) satisfies

k∑
i=0

(zi − zi−1 − 1) = zk − z−1 − (k + 1) = zk − (k + 1) < g,

we obtain an injective map

ψ : M → T, (z0, . . . , zk) 7→ (z0 − z−1 − 1, . . . , zk − zk−1 − 1).

Because ϕ and ψ are injective, it follows

|H| ≥ |T | ≥ |M | =
(
g + k

k + 1

)
(1)

≥
(
⌊l√g⌋+ 1 + k

k + 1

)
=

(
⌊l√g⌋+ (k + 1)

⌊l√g⌋

)
(1)

≥
(
2⌊l√g⌋+ 1

⌊l√g⌋

)
,

so Proposition 1.44 implies

|H| > 2⌊l
√
g⌋+1 ≥ 2l

√
g > 2

√
g. (3)

As the final step, we assume that n /∈ P; i.e. m ̸= 1 and derive a contradiction. Since n
is not a perfect power, there exists a prime number p′ ∈ P with p′ ̸= p and p′ | m, so the
map

χ : N×N→ N, (s, t) 7→ psmt

is injective. Therefore, the set

A :=
{
psmt : s, t ∈ {0, . . . , ⌊√g⌋}

}
⊂ N

satisfies |A| =
(
⌊√g⌋+ 1

)2
> g. By definition of G, this means that there must exist

u, u′ ∈ A, u ̸= u′ with u ≡ u′ mod r. Furthermore, for any h ∈ H, there exists e ∈ Nk+1,
such that h = fe(ζ) and the calculation

hu = fe(ζ)
u (2)
= fe(ζ

u) = fe(ζ
u′
)
(2)
= fe(ζ)

u′
= hu

′

shows that all elements of H are roots of the polynomial xu − xu′ ∈ Fq[x]. However, we
observe that

deg
(
xu − xu′

)
= max(u, u′) ≤ max(A) = (pm)⌊

√
g⌋ = n⌊√g⌋ ≤ n

√
g,

contradicting (3) and thus concluding the proof.

That Algorithm 1.42 is indeed correct is now essentially just a corollary of the previous
proposition.

Proof (of correctness of Algorithm 1.42). It is clear that the algorithm always terminates
and that it yields the correct result whenever step (6) is not reached (Proposition 1.40).
If the algorithm terminates in step (6), then we are precisely in the situation of Proposi-
tion 1.45, so the algorithm also works in that case.

1 Integer Arithmetic 26

We now examine the number of bit-operations required for Algorithm 1.42 and start
with the following lemma, which also constitutes an interesting result from number theory
in its own right. Its proof uses some elementary analysis.

Lemma 1.46. Let n ∈ N≥1. Then λ(n) := lcm(1, 2, . . . , n) ≥ 2n−2.

Proof. Any polynomial f :=
∑n

i=0 aix
i ∈ Z[x] satisfies∫ 1

0

f(x)dx =
n∑

i=0

ai
i+ 1

=
k

λ(n+ 1)

for some k ∈ Z.
For m ∈ N, consider the polynomial f = xm(1− x)m ∈ Z[x] and notice that for 0 < x <

1, we have 0 < f(x) ≤ 1
4m

and thus 0 <
∫ 1

0
f(x)dx ≤ 1

4m
. Therefore, we have

0 <
k

λ(2m+ 1)
≤ 1

4m
and thus λ(2m+ 1) ≥ k · 4m ≥ 4m,

so we conclude

λ(n) ≥ λ

(
2 ·
⌊
n− 1

2

⌋
+ 1

)
≥ 4⌊

n−1
2

⌋ ≥ 4
n−2
2 = 2n−2.

The next lemma gives as an upper bound on r ∈ N appearing in Algorithm 1.42.

Lemma 1.47. Let n ∈ N>1 be of length l := ⌊log2(n)⌋ + 1 and r ∈ N>1 minimal, such
that ni ̸≡ 1 mod r for all i ∈ {1, . . . , l2}. Then r ≤ l5.

Proof. Aiming for contradiction, assume that r > l5. Then for all k ∈ {2, . . . , l5},
there exists some i ∈ {1, . . . , l5} with ni ≡ 1 mod k, so k |

∏l2

i=1(n
i − 1). It follows

λ(l5) |
∏l2

i=1(n
i − 1) and with Lemma 1.46 and the equation 2l ≥ n, we see that

2l
5−2 ≤ λ

(
l5
)
≤

l2∏
i=1

(
ni − 1

)
<

l2∏
i=1

ni = nl2(l2+1)/2 ≤ 2l
3(l2+1)/2.

Hence l5 − 2 <
l3(l2+1)

2
, so l5 − l3 < 4, contradicting l ≥ 2.

We can now show that the number of bit-operations required by Algorithm 1.42 is
bounded from above by a polynomial in the length of the input.

Theorem 1.48. Algorithm 1.42 requires O(l16.5) bit-operations when applied to n ∈ N>1

with length l := ⌊log2(n)⌋+ 1.

Proof. Applying Algorithm 1.41 in step (1) requires O(l4 · log2(l)) bit-operations.
In step (2), we need to check for each r > 1 whether r | n (O(l2) bit-operations) and com-
pute ni mod r for each i ∈ {1, . . . , l2} (O(l2 · log2(r)2) bit-operations). By Lemma 1.47,
we only need to check r ≤ l5 and this also implies l(r) ∈ O(log2(l)), resulting in a total
of O(l5 · (O(l2) +O(l2 · log2(l)2))) = O(l5 · l2 · log2(l)2) for step (2).
Finally, step (5) requires O(

√
rlr2l3) bit-operations and by Lemma 1.47, this amounts to

O(l16.5) bit-operations.

1 Integer Arithmetic 27

One can define variants of the AKS algorithm that have a running-time ofO(l6log2(l)
m)

for some (quite complicated) m ∈ N. Lec 11
2021-11-23We finish this section by proving a version of the prime number theorem. To that end,

we introduce the following notation.

Definition 1.49. For r ∈ R, we denote the number of prime number less than or equal
to r as

π : R→ N, r 7→ |{p ∈ P : p ≤ r}|.

This is called the prime-counting function.

It is now rather straightforward to give an upper and a lower bound for this function.

Theorem 1.50. Let n ∈ N>1. Then

n− 2

log2(n)
≤ π(n) ≤ 10

n

log2(n)

and
1

2

n

log2(n)
≤ π(n) ≤ 10

n

log2(n)
.

Proof. Using Lemma 1.46, we calculate

2n−2 ≤ λ(n) =
∏
p∈P
p≤n

p⌊logp(n)⌋ ≤
∏
p∈P
p≤n

plogp(n) = nπ(n) = 2log2(n)π(n),

so n− 2 ≤ log2(n) · π(n).
To show that π(n) ≤ 10 n

log2(n)
, we use induction on n. The cases n < 9 can be easily

checked explicitly, so let n ≥ 9 and write m = ⌈n
2
⌉. Then we have∏

p∈P
m<p≤2m

p ≥
∏
p∈P

m<p≤2m

m = mπ(2m)−π(m) = 2log2(m)(π(2m)−π(m))

and

22m = (1 + 1)2m =
2m∑
i=0

(
2m

i

)
≥
(
2m

m

)
.

Because any p ∈ P with m < p ≤ 2m divides
(
2m
m

)
, it follows(

2m

m

)
≥

∏
p∈P

m<p≤2m

p,

so combining the inequalities yields

log2(m)(π(2m)− π(m)) ≤ 2m. (∗)

With (∗) and the inductive hypothesis, it follows

π(n) ≤ π(2m)
(∗)
≤ π(m) +

2m

log2(m)
≤ 12m

log2(m)
≤ 12m

log2(n)− 1
=

12m

log2(n)
(
1− 1

log2(n)

)

1 Integer Arithmetic 28

and because n ≥ 9, we have log2(n) > 3, so this is upper bounded by

12m

log2(n)
(
1− 1

log2(n)

) ≤ 12m

log2(n)
(
1− 1

3

) =
18m

log2(n)
≤ 9(n+ 1)

log2(n)
≤ 10n

log2(n)
.

The final inequality 1
2

n
log2(n)

≤ π(n) follows by explicitly checking it for n < 4 and by

using the already proven inequality for n ≥ 4:

π(n) ≥ n− 2

log2(n)
=

2n− 4

2log2(n)
≥ n

2log2(n)
.

The previous theorem constitutes a version of the well-known prime number theorem,
which we now state without a proof.

Theorem 1.51 (Prime Number Theorem).
The prime-counting function π : R→ N satisfies

lim
x→∞

π(x)
x

ln(x)

= 1.

The theorem means that π(x) is approximately equal to f(x) := x
ln(x)

for larger x ∈ R.
The derivitive

f ′(x) =
ln(x)− 1

ln(x)2
≈ 1

ln(x)

can then be used to further interpret this result: For a ∈ R, call the next larger prime
p ∈ P. Since f(a) + (x− a) · f ′(a) provides an approximation to f for x ∈ R close to a,
we have

1 = π(p)− π(a) ≈ f(p)− f(a) ≈ (p− a) · f ′(a) ≈ p− a
ln(a)

,

so the expected distance between two primes in the order of magnitude of x is ln(x);
that is, their distance rises linearly in the length of the numbers. In other words, the
probability of a number “close to” x being prime is roughly 1

ln(x)
, showing that large

numbers are less likely to be prime than smaller ones.

2 Cryptography 29

2 Cryptography

In this section, we study encryption and decryption of messages, which is not only inter-
esting it its own right but also provides an application of our results about prime numbers
from the previous section.

We consider the following situation: A wants to send a message to B such that E
cannot understand its meaning. Therefore, A encrypts the message x via an encryption
function ϕ : x 7→ x′ (which is assumed to be a bijection) and sends the encrypted message
x′ to B, so that B can decrypt the message x′ with the decryption function ϕ−1 : x′ 7→ x
to obtain the original message x. This way, E cannot comprehend the actual transmitted
information.

There are two main types of cryptography systems.
In symmetric-key cryptography, A and B share a secret key used for encryption
and decryption. The Advanced Encryption Standard (AES) is a present-time example of
symmetric-key cryptography, approved by the US government in 2001.
The main advantages of this approach are that it is quick and provides good security.
However, in many cases it is hard to exchange the secret key in such a way that it cannot
be read by other parties.
In contrast, in public-key cryptography the encryption function ϕ : x 7→ x′ is made
public by B, but the decryption function ϕ−1 : x′ 7→ x is kept secret. Of course, this only
makes sense if it is extremely difficult to compute the inverse ϕ−1 from ϕ. One advan-
tage of this approach is that it circumvents the need to secretly share any encryption keys.

We will only investigate public-key cryptography in this section, as it heavily relies on
prime numbers and their properties. This type of cryptography has many applications
in practice, including sending data, exchanging keys for symmetric-key cryptography
and user authentification (usually in the internet). In the latter example, a user can
authenticate themselves by sending a message x together with ϕ−1(x), so anyone can
verify that ϕ

(
ϕ(x)−1) = x to confirm the identity of B.

2.1 RSA Encryption
Lec 12
2021-11-25Euler’s totient function (also called Euler’s phi function) counts the number of coprime

numbers that are less than or equal to a given number n ∈ N:

φ : N→ N, n 7→ |{a ∈ N : 1 ≤ a ≤ n, gcd(n, a) = 1}|.

By definition, φ(n) is the order of the group of units (Z/(n))× for n ∈ N>0.
By the Chinese remainder theorem, if m and n are coprime, then φ(m ·n) = φ(m) ·φ(n).
It is also easy to see that φ(pk) = pk−1(p− 1) for any prime number p ∈ P and k ∈ N>0.

Euler’s totient function is used in the Rivest-Shamir-Adleman algorithm (RSA), which
is one of the most prominent algorithms for public-key cryptography.

Algorithm 2.1 (RSA).
Suppose that A wants to send a secret message to B.

(1) B chooses two distinct, large prime numbers p and q (usually with more than 100
decimal digits) and computes their product n := p · q.

2 Cryptography 30

(2) B chooses e ∈ N and computes f ∈ N such that e · f ≡ 1 mod φ(n), where
φ(n) = (p− 1)(q − 1) denotes Euler’s totient function.

(3) B shares the public key (n, e) and keeps the private key f secret.

(4) A represents the message as an element x ∈ Z/(n). Of course if n is too small, A
can just split the information into multiple messages.

(5) A computes y := xe and sends y to B.

(6) B computes yf , which is the original message x ∈ Z/(n)

Proof (of correctness). We have to check that x = yf . By definition, there exists a ∈ N,
such that

e · f = a · (p− 1)(q − 1) + 1.

If p ∤ x, then we have xef−1 ≡ 1 mod p by Fermat’s little theorem, implying xef ≡ x
mod p and we observe that this equation also holds if p | x. Since the same holds true
for q, we conclude xef ≡ x mod n and yf = xef = x.

Note that the steps (1)-(3) are “initialization steps”; i.e. they only need to be per-
formed a single time and don’t need to be rerun if A wants to send more messages to
B. Since we will generally assume that our messages are given as elements of Z/(n), the
only steps that needs to be performed for each sent message are the steps (5) and (6).

When investigating the complexity of this algorithm, we see that the initialization
steps are the most expensive part of the algorithm.

(1) We find a prime number of length l by a random search, where we skip any even
number encountered. For each attempt, we perform up to m Miller-Rabin tests
(Algorithm 1.36) so that a number that passes all those tests is composite with
a probability of less than 2−m (Theorem 1.39). Since the Miller-Rabin test has
complexity of O(l3) and because by the prime number theorem, we need about
O(l) attempts, it can be expected that this step requires a total of O(ml4) bit-
operations.

(2) Calculating φ(n) requires O(l2) bit-operations. We can then use the Extended
Euclidean Algorithm (Algorithm 1.27) to compute gcd(e, φ(n)). If the result is 1,
then f has been found: O(l2).

(5) Using fast exponentiation (Algorithm 1.30), step (5) requires O(l(e)l2) = O(l3)
bit-operations.

(6) Similarly, step (6) needs O(l(f)l2) = O(l3) bit-operations.

Note that in the unlikely case that we are unlucky and obtain a composite number in
step (1), there will be unexpected errors in the encryption or decryption process, so this
will almost certainly be detected throughout multiple applications of the algorithm.

Next we investigate the security of this algorithm. As mentioned, any algorithm im-
plementing public-key cryptography has to ensure that it is computationally very difficult
to obtain the private key from the public one. In the setting of this algorithm, any per-
son that knows p and q can compute the private key f , so the security hinges on the

2 Cryptography 31

assumption that factorization is computationally extremly difficult.
Currently, this assumption seems to be true. However, there are some algorithms relying
on the use of quantum computers that can compute factorizations in polynomial time,
most notably Shor’s algorithm.

While it is impossible to prove that Algorithm 2.1 is secure, we can at least prove that
it is secure if and only if factorization is difficult (i.e. knowing f is equivalent to knowing
p and q). Indeed, the following algorithm shows that one can compute p and q from f in
polynomial time. We note that for m := ef − 1, we have φ(n) | m and m ≤ n2 (because
e, f ≤ φ(n) ≤ n) in the above algorithm.

Algorithm 2.2 (Compute a proper divisor of certain numbers).

Input: n ∈ N>1 odd, composite and square-free; m ∈ N with φ(n) | m and m ≤ n2.

Output: d ∈ N with 1 < d < n and d | n.

(1) Repeat:

(2) Choose a ∈ {2, . . . , n− 2} randomly.

(3) Set k := m and d := gcd(a, n).

(4) If d ̸= 1: return d.

(5) While d ̸= 1 and k ∈ N even:

(6) Compute d := gcd
(
ak − 1, n

)
.

(7) If 1 < d < n: return d.

(8) Set k := k
2
.

This algorithm is a Las-Vegas algorithm, meaning that if it terminates, then it yields
the desired result. We will now prove this claim.

Theorem 2.3. If Algorithm 2.2 terminates, then it computes a factor of n. The expected
number of iterations (of the the outer loop) required is less than or equal to 2.

Proof. Let n =
∏r

i=1 pi be a decomposition of n into distinct primes pi. Then φ(n) =∏r
i=1(pi−1), so at the beginning of the algorithm, all pi−1 divide k. After some iterations

of the algorithm, it will either terminate in step (4) or (7) or it will happen for the first
time that pj − 1 ∤ k for some j ∈ {1, . . . , r}. In the first case, it is clear that a proper
divisor of n is returned, so we only need to consider the second case. We partition the
index set {1, . . . , r} into two subsets {1, . . . , r} = I

∐
J , where

I := {i ∈ {1, . . . , r} : pi − 1 | k}, J := {i ∈ {1, . . . , r} : pi − 1 ∤ k}

and notice that j ∈ J . Let a ∈ N>0 be coprime to n. Then by Fermat’s little theorem,
we have ak ≡ 1 mod pi for all i ∈ I.
We now consider the case i ∈ J . Then pi − 1 | 2k and pi − 1 ∤ k, so k ≡ pi−1

2
mod pi −

1, implying ak ≡ ±1 mod pi. Furthermore, with k = l(pi − 1) + r with l ∈ Z and
r ∈ {1, . . . , pi − 2}, we observe that the two polynomials f = xk − 1 ∈ Fpi [x] and
g = xr−1 ∈ Fpi [x] induce the same polynomial function Fpi → Fpi and therefore at least

2 Cryptography 32

one a ∈ Z/(pi)× must satisfy ak = −1, because otherwise g would have pi−1 > r = deg(g)
roots. In particular, there is some element b ∈ Z/(pj)× with bk = −1.
Consider the group homomorphism

ϕ : Z/(n)× → Z/(p1)
× × · · · × Z/(pr)×, a 7→

(
ak mod p1, . . . , a

k mod pr
)
,

which is just the composition of the homomorphism of the Chinese remainder theorem
with the exponentiation map (−)k:

Z/(n)× Z/(p1)
× × · · · × Z/(pr)× Z/(p1)

× × · · · × Z/(pr)×.
(−)k

By the above, the image im(ϕ) is contained in the subgroup {±1}×· · ·×{±1}, so by com-
posing with the canonical projection {±1}×· · ·×{±1}↠ {±1}×· · ·×{±1}/⟨(−1, . . . ,−1)⟩,
we obtain the group homomorphism

ϕ̃ : Z/(n)× → {±1} × · · · × {±1}/⟨(−1, . . . ,−1)⟩, a 7→ (ak mod p1, . . . , ak mod pr).

By definition, we have{
c ∈ Z/(n)× : ϕ(c) /∈ {(1, . . . , 1), (−1, . . . ,−1)}

}
=
{
c ∈ Z/(n)× : c /∈ ker(ϕ̃)

}
and this set is nonempty, because by the Chinese remainder theorem, there exists c ∈
Z/(n)×, such that c ≡ 1 mod pi for i ̸= j and c ≡ b mod pj.
Therefore, the homomorphism theorem implies that

2 ≤
∣∣∣im(ϕ̃)∣∣∣ = ∣∣Z/(n)×∣∣∣∣∣ker(ϕ̃)∣∣∣ ,

so at least half the elements a ∈ Z/(n)× satisfy ϕ(a) /∈ {(1, . . . , 1), (−1, . . . ,−1)}. In
other words, for each such a, there exist v, w ∈ {1, . . . , r}, such that ak ≡ 1 mod pv and
ak ≡ −1 mod pw, implying pv | ak − 1 and pw ∤ ak − 1. We conclude that the algorithm
terminates for at least half the a ∈ {1, . . . , n− 1} and because k ∈ N is even, it suffices to
check a ∈ {2, . . . , n− 2}. Finally, the expected number of a ∈ {2, . . . , n− 2} that need
to be tested is thus upper bounded by

∞∑
i=1

i

(
1

2

)i

=
∞∑
i=1

∞∑
j=i

(
1

2

)j

=
∞∑
i=1

(
2−

(
1
2

)i − 1
1
2
− 1

)
=

∞∑
i=1

(
1

2

)i−1

= 2.

One can show that the expected number of bit-operations of Algorithm 2.2 is in
O(l(n)4).

The RSA problem is the question whether it is possible to decrypt some (or even all)
messages in the RSA algorithm without knowing the private key.

2 Cryptography 33

2.2 Diffie-Hellman Key Exchange
Lec 13
2021-12-02The Diffie-Hellman key exchange is a simple algorithm that can be used to exchange keys

over a channel that is visible to other parties.

Algorithm 2.4 (Diffie-Hellman key exchange).
Suppose that A and B want to exchange a key via an insecure channel.

(1) A and B agree on a large prime number p ∈ P and on some g ∈ (Z/(p))×.

(2) A chooses a ∈ N randomly and sends u := ga to B.

(3) B chooses b ∈ N randomly and sends v := gb to A.

(4) A computes va = gab and B computes ub = gab. They share the secret key gab.

Example 2.5. We demonstrate the procedure with an example.

(a) Let p = 17 and g = 3 ∈ Z/(17)×.

(b) A chooses a = 7, 3
a
= 11.

(c) B chooses b = 4, 3
b
= 13.

(d) The key is 11
4
= 13

7
= 4.

For a given monoid M and elements m ∈M , t ∈ ⟨m⟩, the discrete logarithm problem
(DLP) is the task to compute some a ∈ N with t = ma.
In the above algorithm, it is sufficient to compute a or b in order to determine the secret
key gab, so if the discrete logarithm problem can be solved efficiently, then the algorithm
offers very little security. Note that this is only a sufficient condition. Indeed, the Diffie-
Hellman problem asks whether it is also necessary to solve DLP in order to obtain the
secret key in the Diffie-Hellman key exchange.
It is possible to use elliptic curve cryptography in order to obtain a group that can be
used for potentially difficult DLPs.

3 Factorization 34

3 Factorization

In this section, we want to factorize a given natural number n ∈ N. Of course, if we have
an algorithm that determines a proper divisor d ∈ N (i.e. d | n and 1 < d < n) or tells
us that the number is prime, then we can factorize any natural number by iterating the
algorithm.

We start with a naive algorithm to determine all prime numbers that are less than or
equal to a given threshold.

Algorithm 3.1 (Sieve of Eratosthenes).

Input: n ∈ N>0.

Output: A list P of all prime number p ≤ n, ordered by size.

(1) Form a list L of all natural numbers m ∈ N with 1 < m ≤ n and let P be an
empty list.

(2) While not all numbers in L are marked:

(3) Let p be smallest unmarked number in L.

(4) Add p to the end of P .

(5) Mark all numbers in L which are divisible by p.

Given a composite number n ∈ N, we can obtain a proper divisor of n by running
Algorithm 3.1 with input

√
n and then performing trial divisions. This naive algorithm

requires O(
√
n · log2(n)) bit-operations.

3.1 Pollard’s rho Method

Let M be a set and f : M → M a function. Then there is a left monoid action of the
monoid (N,+) on M , where n ∈ N acts on M by applying f n times; i.e. n ·m = fn(m).
For x ∈M , the orbit N · x = {n · x : n ∈ N} is just a sequence (xn)n∈N.
This observation is used in Pollard’s rho method, which is another approach to factorizing
numbers. The key idea is to consider a “chaotic” function f : Z/(n)→ Z/(n), to choose
a “starting value” x0 ∈ Z/(n) and to consider the orbit xi := f(xi−1) = f i(x0).
Because Z/(n) is a finite set, there exist indices i, j ∈ N with i < j and xi = xj. In
particular, there are indices i, j ∈ N with i < j, such that xi ≡ xj mod p for some
(unknown) prime divisor p of n. From i onwards, the sequence (xk mod p)k∈N becomes
periodic. Since the start of the sequence might be non-periodic, it can be visualized as
the Greek letter ρ, hence the name.
The hope is now that xi ̸≡ xj mod n. In that case, d := gcd(xi − xj, n) satisfies d < n
and p | d, so it is a proper devisor of n.
In order to turn this idea into an algorithm, we need to determine i, j ∈ N with the
above property. Checking all pairs (i, j) ∈ N × N would be very inefficient, but luckily
the following proposition shows that it suffices to check pairs of the form (i, 2i).

Proposition 3.2. Let M be a set, f : M →M a function and x0 ∈M . Set xi := f i(x0)
and suppose that there exist t, l ∈ N, l > 0 with xt+l = xt. Then there is j ∈ N, such
that x2j = xj and t ≤ j < t+ l.

3 Factorization 35

Proof. By assumption, we have f l(xt) = xt, so any a ∈ N satisfies fal(xt) = xt. Let
j := a · l for some a ∈ N. If j ≥ l, then

x2j = xal+j = x(j−t)+t+al = f j−t
(
fal(xt)

)
= f j−t(xt) = xj.

Therefore, if t = 0, then we may choose j = l and otherwise we can use j = t+(−t mod l),
where −t mod l is understood to be the unique representative of −t in {0, . . . , l − 1}.

Lec 14
2021-12-07We can now state the algorithm that is based on the above observations with f(x) :=

x2 + 1. It is a Las-Vegas algorithm.

Algorithm 3.3 (Pollard’s rho algorithm).

Input: n ∈ N>1 composite.

Output: A proper divisor d ∈ N of n.

(1) Repeat:

(2) Choose x ∈ {0, . . . , n− 1} randomly.

(3) Set y := x, d := 1.

(4) While d ̸= n:

(5) Set x := x2 + 1 mod n and y := (y2 + 1)2 + 1 mod n.

(6) Compute d := gcd(n, x− y).

(7) If 1 < d < n: return d.

It is clear that if the algorithm terminates, then it indeed returns a proper divisor
of n. In order to estimate the expected running-time of the algorithm, we require the
following lemma.

Lemma 3.4. When uniformly and independently drawing random numbers from {1, . . . , n},
the expected number of draws until some number has appeared twice is less than

√
πn
2
+2.

Proof. Let s ∈ N be the number of draws until a match occurs. Note that

e−x ≥ 1− x ∀ x ∈ R≥0, (∗)

because f(x) := e−x−(1−x) satisfies f(0) = 0 and f ′(x) ≥ 0 for all x ∈ R≥0. If k ≥ n+1,
then P(s > k) = 0. Otherwise, we see that

P(s > k) =
k∏

i=1

(
1− i− 1

n

)
(∗)
≤

k∏
i=1

e−
i−1
n = e−

(k−1)k
2n ≤ e−

(k−1)2

2n .

Because R≥0 → R≥0, x 7→ e−
(x−1)2

2n is monotonically decreasing and
∫∞
−∞ e−x2

=
√
π, the

expected value of s is

∞∑
k=0

P(s > k) < 2 +
∞∑
k=2

e−
(k−1)2

2n ≤ 2 +

∫ ∞

1

e−
(x−1)2

2n dx = 2 +

∫ ∞

0

e−
x2

2ndx

= 2 +
√
2n

∫ ∞

0

e−x2

dx = 2 +
√
2n ·
√
π

2
= 2 +

√
nπ

2
,

where we first substituted x− 1⇝ x and then x√
2n
⇝ x.

3 Factorization 36

This lemma has an interesting application in the birthday problem, which constitutes
the following example.

Example 3.5. Suppose that people arrive at a party one after the other. When can
we expect that there are two guests that share the same birthday (ignoring leap years
and assuming that all dates are equally likely and independent from each other)? By

Lemma 3.4, this is likely to be true after
√

365π
2

+ 2 ≈ 26 people have arrived.

Theorem 3.6. Let p ∈ P be the smallest prime divisor of n. If the distribution of f i(x)
with f(x) := x2 + 1 mod p is (sufficiently) uniform and independent, then the expected
number of bit-operations required for the inner part of Algorithm 3.3 (i.e. excluding the
outer loop) is O(4

√
n · log2(n)2).

Proof. Denote by xi the value of x in the i-th iteration and by yi the value of y in the
i-th iteration and note that yi = f i(xi) = f 2i(x0) = x2i for all i ∈ N, because this is true
in the beginning and

yi+1 = f 2(yi) = f 2
(
f i(xi)

)
= f i+1(xi+1).

By minimaltiy, p ≤
√
n, so the expected number of iterations until xi = xj mod p is

O(4
√
n) by Lemma 3.4 and by Proposition 3.2 the same is true until we have x2j = xj

mod p. Because each iteration requires O(log2(n)
2) bit-operations, the assertion follows.

3.2 Pollard’s p− 1 Algorithm

Another approach to factoring numbers is based on the following idea. Let p | n be a
prime divisor. If a ∈ Z satisfies p ∤ a, then ap−1 ≡ 1 mod p by Fermat’s little theorem.
Therefore, if we can find m ∈ N, such that p − 1 | m, then am ≡ 1 mod p, implying
p | gcd(n, am − 1).
Of course, since p is unknown, there is no obvious way to obtain such a m, but one can
try to multiply prime powers dividing p− 1.

Definition 3.7. Let p ∈ P and B ∈ N. If all prime powers dividing p− 1 are less than
or equal to B, then p− 1 is B-powersmooth.

If p− 1 is B-powersmooth, then

m :=
∏
q∈P
q≤B

q⌊logq(B)⌋

is a multiple of p− 1.
Therefore, we can choose some upper bound B ∈ N, choose m as above and hope that
p − 1 is B-powersmooth. This gives rise to the following algorithm, which is another
Las-Vegas algorithm.

Algorithm 3.8 (Pollard’s p− 1 algorithm).

Input: n ∈ N>1 composite.

Output: A proper divisor d ∈ N of n.

3 Factorization 37

(1) Repeat:

(2) Choose a smoothness bound B ∈ N.

(3) Using Algorithm 3.1, obtain a list L of all primes ≤ B.

(4) Choose a ∈ {2, . . . , n− 2} randomly.

(5) For q ∈ L:
(6) Compute k := q⌊logq(B)⌋

(7) Set a := ak mod n and d := gcd(n, a− 1).

(8) If 1 < d < n: return d.

For RSA, this means that the prime numbers p and q used to generate the key should
not be chosen such that p−1 or q−1 become B-powersmooth for a “moderate” B, because
otherwise it may be easy to obtain the private key using Pollard’s p− 1 algorithm.

3.3 The Quadratic Sieve
Lec 15
2021-12-09The quadratic sieve is from a mathematical standpoint the state of the art algorithm

for factorization.
The main idea is to observe that writing a number n ∈ N as a product of two natural

numbers is equivalent to writing it as a difference of two square numbers. Indeed, if
n = x2 − y2 with x, y ∈ N, then n = (x+ y)(x− y) is a factorization of n. Conversely, if

n = a · b is odd with a, b ∈ N, then we can write n =
(
a+b
2

)2 − (a−b
2

)2
with a+b

2
, a−b

2
∈ Z.

Our goal is thus to find x, y ∈ Z, such that n | x2−y2 but n ∤ x+y and n ∤ x−y, because
then gcd(n, x+ y) and gcd(n, x− y) will be a proper divisors. In other words, we want
to determine x, y ∈ Z, such that x2 ≡ y2 mod n and x ̸≡ ±y mod n. Let n =

∏r
j=1 p

ej
j

be a decomposition into prime factors and assume that n odd. Furthermore, assume that
pj ∤ x for all j ∈ {1, . . . , r}. By the Chinese remainder theorem, we have

x2 ≡ y2 mod n ⇐⇒

(
y + p

ej
j Z

x+ p
ej
j Z

)2

= 1 ∈
(
Z/
(
p
ej
j

))× ∀ j ∈ {1, . . . , r}.
Lemma 3.9. Let G = ⟨t⟩ be a cyclic group of even order n. Then there are exactly two
square roots of unity, namely 1 and t

n
2 .

Proof. Let x ∈ G with x2 = 1 and x = tk for k ∈ {0, . . . , n− 1}. It follows t2k = 1,
so n | 2k, which implies n

2
| k. We conclude that k = 0 or k = n

2
, which shows the

assertion.

Since
(
Z/
(
p
ej
j

))×
is cyclic of even order, Lemma 3.9 implies that there are exactly

two square roots of unity in this group, so there exist exactly 2r equivalence classes of
y in (Z/(n))× with x2 ≡ y2 mod n. Because x ≡ ±y mod n happens for exactly two
equivalence classes, the likelihood of the “bad case” x ≡ ±y mod n is 21−r. We can
explicitly check the case r = 1 with Algorithm 1.41.

Example 3.10. We demonstrate how one could try to determine x, y, k ∈ Z, such that
x2 = kn+ y2 for given n ∈ N.

3 Factorization 38

(a) Let n = 91. We might try to choose x slightly bigger than
√
kn, so that x2 − kn

is small, so it is “more likely” to be a perfect square. Setting k = 1, we have√
kn ≈ 9.5, inspiring the choice x = 10 and because x2 ≡ 32 mod n, we let y = 3

and obtain n = 102 − 32 = (10 + 3)(10− 3) = 13 · 7.

(b) Let n = 4633 and choose k = 3. Because
√
3n ≈ 117.9, we choose x = 118. Then

118 ≡ 52 mod n, so let y = 5. Because gcd(118− 5, n) = 113 and gcd(118 + 5, n) =
41, we conclude 4633 = 41 · 113.

While the approach highlighted in the example works decently for “single usage”, we
require a more systematic search for x and y for practical application, which we investigate
now.

We start by choosing a “suitable” smoothness bound B. With Algorithm 3.1, we can
produce a list of all prime numbers ≤ B and we label them consecutively starting with
p2; that is, we set p2 = 2, p3 = 3, p4 = 5, p5 = 7,... (up to pr). With p1 := −1, the pi
form a factor basis (w.r.t. B); that is, we can write every B-powersmooth number as
a product of the pi. Then we may determine a y with the desired properties using the
following procedure:

(a) Find “enough” a1, . . . , am ∈ Z (calledB-numbers), such that (a2i mod n) =
∏r

j=1 p
ei,j
j

for some ei,j ∈ N.

(b) If the vectors (ei,1, . . . , ei,r) ∈ Fr
2, 1 ≤ i ≤ m are linearly dependent, then there are

µ1, . . . , µm ∈ {0, 1} ⊂ Z with some µi ̸= 0, such that
∑m

i=1 µiei,j = 2kj for some
kj ∈ N. Setting

x :=
m∏
i=1

aµi

i mod n, y :=
r∏

j=1

p
kj
j mod n,

we get the desired equality:

x2 =
m∏
i=1

a2µi

i ≡
m∏
i=1

r∏
j=1

p
µieij
j =

r∏
j=1

p
∑m

i=1 µiei,j
j =

r∏
j=1

p
2kj
j = y2 mod n.

To obtain x ̸≡ ±y mod n, we should choose the ai not too small.

Therefore, the final step is to find a good way to determine B-numbers. We try
numbers of the form t+ ⌊

√
n⌋ with s ∈ R and t ∈ [−s, s]∩Z =: I (called sieve interval).

Writing (a mod n) for the unique integer x ∈ Z with −n
2
< x ≤ n

2
and x ≡ a mod n

for a ∈ Z, we observe that for small enough s, we have((
t+ ⌊

√
n⌋
)2

mod n
)
=
(
t+ ⌊

√
n⌋
)2 − n =: f(t),

so
p
ej
j | f(t) ⇐⇒

(
t+ ⌊

√
n⌋
)2 ≡ n mod p

ej
j . (∗)

Note that (∗) can only hold if n is a square number mod p
ej
j , so in particular n must

be a square number mod pj. Therefore, we may delete all prime numbers from our fac-
tor base that do not have this property. Furthermore, if (∗) is satisfied for some t, then it
also holds true for all elements of t+ p

ej
j Z. We thus obtain the following “sieving proce-

dure”: After having found f(t) with p
ej
j | f(t), mark all elements of t+p

ej
j Z∩I and iterate.

The above observations give rise to the following Las-Vegas algorithm.

3 Factorization 39

Algorithm 3.11 (Quadratic Sieve).

Input: n ∈ N>1 odd composite number.

Output: A proper divisor d ∈ N of n.

(1) If n = me for some m, e ∈ N>1 (use Algorithm 1.41): return m.

(2) Choose a “smoothness bound” B ∈ N and a “sieve bound” s ∈ N.

(3) Let p1 := −1, p2, . . . , pr be a factor basis for B as above, excluding those pi for
which n is not a square mod pi.

(4) For t = −s,−s+ 1, . . . , s− 1, s: compute ft :=
∣∣∣(t+ ⌊√n⌋)2 − n∣∣∣ ∈ N.

(5) For t = −s, . . . , s: set et = (0, . . . , 0) ∈ Nr.

(6) For t = −s, . . . , 0: set et,1 := 1.

(7) For j = 2, . . . r:

(8) For e = 1, . . . , ⌊logpj(B)⌋:

(9) Find all solution
(
t1 mod pej

)
, . . . ,

(
tm mod pej

)
of (t+ ⌊

√
n⌋)2 ≡ n

mod pej .

(10) For t ∈
(
ti + pejZ

)
∩ Z for some i ∈ {1, . . . ,m}: set ft := ft

pj
and et,j :=

et,j + 1.

(11) Let t1, . . . , tm ∈ I be those t ∈ {−s, . . . , s}, such that ft = 1.

(12) Set ai := ti + ⌊
√
n⌋ for i ∈ {1, . . . ,m}.

(13) If the vectors {(eti mod 2) ∈ Fr
2 : 1 ≤ i ≤ m} are linearly independent, restart.

Otherwise, compute µ1, . . . , µm ∈ {0, 1} not all zero and kj ∈ N, such that

m∑
i=1

µieti,j = 2 · kj ∀ 1 ≤ j ≤ r.

(14) Set

x :=
m∏
i=1

aµi

i mod n, y :=
r∏

i=1

p
kj
j mod n.

(15) If gcd(n, x− y) or gcd(n, x+ y) is a proper devisor of n, return it. Otherwise,
restart.

Lec 16
2021-12-14While the algorithm is justified by the considerations before, we still provide some

additional comments.

(6) The t ∈ {−s, . . . , 0} are precisely those t ∈ {−s, . . . , s} for which the term in the
absolute value in the definition of ft is negative. Therefore, the factor basis element
−1 is needed to represent those numbers.

3 Factorization 40

(9) We will see that m ∈ {0, 2, 4} and usually m = 2.

(11) For those ti, the ai as defined in step (12) are B-numbers and the et,i are the correct
exponent vectors for the factorization of (a2i mod n).

To demonstrate the algorithm “in action”, we calculate an extensive example.

Example 3.12. Let n = 20437 and choose B = 10, s = 3. A corresponding factor basis
is p1 = −1, p2 = 2, p3 = 3, p4 = 7, where 5 was excluded, because n ≡ 2 mod 5 is not a
square. Because ⌊

√
n⌋ = 142, we need to solve (t+ 142)2 ≡ n mod pej (step (9) in the

algorithm).

p2 = 2: n ≡ 5 mod 8 is not a square, but n ≡ 1 mod 4 (and also mod 2) is one with
square root ±1 mod 4. If t is even, then f(t) is odd and otherwise 4 | f(t),
so et,2 = 0 if t is even and et,2 = 2 otherwise.

p3 = 3: We have n ≡ 1 mod 3 and ⌊
√
n⌋ ≡ 1 mod 3, so

3 | f(t) ⇐⇒ t+ 1 ≡ ±1 mod 3 ⇐⇒ (t ≡ 0 mod 3) ∨ (t ≡ 1 mod 3).

Similarly, n ≡ 7 ≡ (±4)2 mod 9 and ⌊
√
n⌋ ≡ 7 mod 9, so

9 | f(t) ⇐⇒ t+7 ≡ ±4 mod 9 ⇐⇒ (t ≡ −2 mod 9)∨(t ≡ −3 mod 9).

p4 = 7: We calculate n ≡ 4 ≡ (±2)2 mod 7 and ⌊
√
n⌋ ≡ 2 mod 7, so

7 | f(t) ⇐⇒ t+ 2 ≡ ±2 mod 7 ⇐⇒ (t ≡ 0 mod 7) ∨ (t ≡ 3 mod 7).

We can now perform the “sieving” steps:

t -3 -2 -1 0 1 2 3
ft 1116 837 556 273 12 299 588

1st component of et 1 1 1 1 0 0 0
2nd component of et 2 0 2 0 2 0 2

new ft (i.e. ft divided by powers of 2) 279 837 139 273 3 299 147
3rd component of et 2 2 0 1 1 0 1

new ft 31 93 139 91 1 299 49
4th component of et 0 0 0 1 0 0 2

new ft 31 93 139 13 1 299 1

Therefore, we obtain two B-numbers. For t = 1, the corresponding exponent is e1 =
(0, 2, 1, 0) and for t = 3, it is e3 = (0, 2, 1, 2). These two vectors are linearly dependent
mod 2, as

e1 + e3 = 2 · (0, 2, 1, 1) = 2 · (k1, k2, k3, k4),

so µ1 = 1 and µ3 = 1. It follows x = (1 + 142)(3 + 142) ≡ 298 mod n and y = p22p3p4 =
22 · 3 · 7 = 84. The divisors returned by the algorithm are thus gcd(n, x+ y) = 191 and
gcd(n, x− y) = 107 and since n = 107 · 191, this is even the complete factorization.

Step (9) of the algorithm requires computing square roots in Z/(pe); i.e. solving
x2 ≡ n mod pe for x ∈ Z/(pe). We discuss a systematic way to compute these solutions,
called Hensel lifting.

3 Factorization 41

p ̸= 2: Find the two solutions of x2 = n ∈ Fp using brute force. Then we may inductively
“lift” such a solution mod p to a solution mod pe as follows: For k ≥ 1, assume
we already have x ∈ Z with x2 ≡ n mod pk, so there is r ∈ Z with x2−n = r ·pe.
Then for y ∈ Z, we have(

x+ pky
)2 − n = x2 + 2xypk + p2ky2 − n ≡ (2xy + r)pk mod pk+1,

so by solving the equation 2xy ≡ −r mod p for y, we obtain a solution for
x2 ≡ n mod pk+1.

p = 2: Find x ∈ Z, such that x2 ≡ n mod 8 using brute force. Because n is odd, this
has either four or no solutions. If we have x ∈ Z with x2 ≡ n mod 2k and k ≥ 3,
then there is r ∈ Z, such that x2 − n = r · 2k. Thus for y ∈ Z, we have(

x+ 2k−1y
)2 − n = x2 + 2kxy + y222k−2 − n ≡ (r + xy)2k mod 2k+1,

so by choosing y ≡ r mod 2 (x is necessarily odd), we may inductively construct
the solution.

It can be shown that by choosing B and s close to exp
(√

ln(n)·ln(ln(n))
2

)
, then the

expected running time of Algorithm 3.11 is O(exp
(√

ln(n) · ln(ln(n))
)
).

4 A Computational View towards Linear Algebra 42

4 A Computational View towards Linear Algebra
Lec 17
2021-12-164.1 Complexity of Operations from Linear Algebra

In this section, investigate the complexity of common operations from linear algebra
like solving systems of linear equations, inverting matrices, determining the rank of a
matrix, calculating its determinant and performing matrix multiplication. Throughout
this section, K denotes a field. Instead of counting in bit-operations, we count the cost
in field operations.

Proposition 4.1.

(a) Solving a homogeneous m × n linear equation by Gaussian elimination requires
O(max{m,n}3) field operations.
If the system is inhomogeneous, we need O(max{m,n+ 1}3) field operations.

(b) For A ∈ GLn(K), computing the inverse A−1 by the “usual” method with Gaussian
elimination requires O(n3) field operations.

(c) For A ∈ Kn×n, computing det(A) requires O(n3) field operations.

(d) For A ∈ Km×n and B ∈ Kn×l, computing their matrix product A ·B in the obvious
way takes O(m · n · l) field operations.

Proof.

(a) Let r := rank(A). Using Gaussian elimination, we transform the matrix into strict
row echelon form. Therefore, for 1 ≤ k ≤ r, we need to divide the k-th row
by its first nonzero entry (this amounts to O(n) field operations) and subtract it
from all rows except itself (requiring O(m · n) field operations). Thus, for each
1 ≤ k ≤ r, we need O(n+m ·n) field operations, which amounts to O(max(n,m)3)
field operations in total. Determining a basis for the solution space is subsumed
under this expression.
Solving an inhomogeneous system essentially amounts to solving the homogeneous
m× (n+ 1) system obtained by interpreting the inhomogeneous “solution vector”
as the last column of the matrix.

(b) Computing the inverse can be reduced to solving a linear system of size n× 2n, so
the assertion follows from (a).

(c) To compute det(A), we transform A into strict row echelon form and multiply the
entries on the main diagonal, so the claim again follows from (a).

(d) Each of the m · l entries of the resulting matrix is obtained by calculating the dot
product of a row of A with a column of B.

Because of this result, we say that these basic computations from linear algebra have
cubic complexity (in max{m,n}). Note that this is somewhat inprecise, because the
input length is O(max{m,n}2).

4 A Computational View towards Linear Algebra 43

4.2 Strassen Multiplication

It turns out that the naive way to multiply two matrices is not the most efficient algorithm
for this task. One improvement is Strassen multiplication. The basic idea behind the
algorithm is that it can be useful to split a matrix into submatrices (“block matrices”).
Indeed, for two matrices A,B ∈ K2n×2n, we can write

A =

(
A1,1 A1,2

A2,1 A2,2

)
and B =

(
B1,1 B1,2

B2,1 B2,2

)
with Ai,j, Bi,j ∈ Kn×n.

Then

A ·B = C =

(
C1,1 C1,2

C2,1 C2,2

)
with Ci,j = Ai,1B1,j + Ai,2B2,j ∈ Kn×n.

Similar to Karatsuba multiplication for integers (see Algorithm 1.8), we can reduce
the eight multiplications needed for the above calculation by one using the following trick.
Defining seven (temporary) matrices, M1, . . . ,M7

M1 = (A1,2 − A2,2) · (B2,1 +B2,2), M4 = (A1,1 + A1,2) ·B2,2,

M2 = (A1,1 + A2,2) · (B1,1 +B2,2), M5 = (A2,1 + A2,2) ·B1,1,

M3 = (A1,1 − A2,1) · (B1,1 +B1,2), M6 = A1,1 · (B1,2 −B2,2),

M7 = A2,2 · (B2,1 −B1,1).

explicit caluclations show that one can obtain Ci,j by

C1,1 =M1 +M2 −M4 +M7, C1,2 =M4 +M6,

C2,1 =M5 +M7, C2,2 =M2 −M3 −M5 +M6.

This caluclation requires seven multiplications and eighteen additions of n× n matrices.
Since addition has quadratic runtime and multiplication cubic, this is asymptotically
superior to eight multiplications. This observation translates to the following algorithm.

Algorithm 4.2.

Input: A ∈ Km×n, B ∈ Kn×l.

Output: A ·B ∈ Km×l.

(1) Find k ∈ N minimal, such that m,n, l ≤ 2k.

(2) If k = 0: return A ·B (multiplication in K).

(3) Add zeros to A and B in order to turn them into K2k×2k matrices; that is, let

A′ :=

(
A 0
0 0

)
∈ K2k×2k and B′ :=

(
B 0
0 0

)
∈ K2k×2k .

(4) Write A′ =

(
A1,1 A1,2

A2,1 A2,2

)
and B′ =

(
B1,1 B1,2

B2,1 B2,2

)
with Ai,j, Bi,j ∈ K2k−1×2k−1

.

(5) Recursively call this algorithm to compute M1, . . . ,M7 and C1,1, C1,2, C2,1, C2,2

as defined above.

4 A Computational View towards Linear Algebra 44

(6) Write

(
C1,1 C1,2

C2,1 C2,2

)
=

(
D1,1 D1,2

D2,1 D2,2

)
with D1,1 ∈ Km×l and return D1,1.

Theorem 4.3. For matrices A ∈ Km×n, B ∈ Kn×l Algorithm 4.2 requires

O(max{m,n, l}log2(7))

field operations in order to compute A ·B.

Proof. Define k as in step (1) and consider

Θ(k) = max
{
number of field operations required for A ∈ Km×n, B ∈ Kn×l

}
.

The only step in the algorithm requiring field operations is step (5), so from the above,
we obtain

Θ(k) = 7Θ(k − 1) + 18
(
2k−1

)2
.

Claim: Θ(k) = 7k+1 − 6 · 4k.
We prove this by induction on k.
The base case k = 0 holds true, since in that case the involved matrices are just numbers,
implying Θ(0) = 1.
The inductive step follows from the calculation

Θ(k) = 7Θ(k − 1) + 18
(
2k−1

)2
= 7
(
7k − 6 · 4k−1

)
+ 18 · 4k−1

= 7k+1 + 4k−1(18− 42)

= 7k+1 − 24 · 4k−1

= 7k+1 − 6 · 4k.

By definition of k, we have 2k−1 < r for r := max{m,n, l}, so the assertion follows from
the claim:

Θ(k) < 7k+1 < 7log2(r)+1+1 = 49 · 7log2(r) = 49 · 2log2(7)log2(r) = 49 · rlog2(7).

Because log2(7) ≈ 2.807, this is indeed an improvement of the naive algorithm.

4.3 Common Operations as Matrix Multiplication
Lec 18
2021-12-21The goal of this section is to reduce common operations like determining the rank or

determinant of a matrix to matrix multiplication. In this way, better algorithms for
matrix multiplication also allow us to compute these other operations more efficiently.

Let M : N>0 → R>0 be a monotonic function such that two matrices in Kn×n can be
multiplied in at mostM(n) field operations. We assume that there exists ϵ > 0 satisfying

22+ϵ ·M(n) ≤M(2n) ≤ 8 ·M(n) ∀n ∈ N>0, (∗)

which is true for all currently known multiplication algorithms.
Intuitively, this means that we assume matrix multiplication to be more than quadratic
in n and at most cubic.

4 A Computational View towards Linear Algebra 45

In particular, (∗) and the monotonicity imply that for all n ∈ N with n ≥
(

22+ϵ

M(1)

) 1
ϵ
, we

have

n2 =
n2

M(1)
·M(1) ≤ n2

M(1) · 2(2+ϵ)⌊log2(n)⌋
·M(2⌊log2(n)⌋)

≤ 22+ϵ

M(1) · nϵ
·M(2⌊log2(n)⌋) ≤M(2⌊log2(n)⌋) ≤M(n). (∗∗)

By adjusting the value of M for all smaller n, we may assume that (∗∗) holds for all
n ∈ N. This is also intuitive in the sense that any multiplication algorithm would cer-
tainly need to read the input and output its result, which is already quadratic in n.
We also note that by adding zeros to a non-quadratic matrix, the product of any two
matrices A ∈ Km×n, B ∈ Kn×l can be computed with at most M(max{m,n, l}) field
operations.

The first step towards our goal is to observe that inverting a triangular matrix can be
computed by multiplying some suitable matrices.

Proposition 4.4. The inverse A−1 of an invertible triangular matrix A ∈ GLn(K) can
be computed in O(M(n)) field operations.

Proof. Because the operations of transposing and inverting a matrix commute, we may
assume that A is an upper triangular matrix. Let k ∈ N be minimal, such that n ≤ 2k

and form

B :=

(
A 0
0 I2k−n

)
=

(
B11 B12

0 B22

)
∈ K2k×2k with Bij ∈ K2k−1×2k−1

.

It is easy to verify that

B−1 =

(
B11

−1 −B11
−1B12B22

−1

0 B22
−1

)
and we can recursively calculate B11

−1 ∈ K2k−1×2k−1
and B22

−1 ∈ K2k−1×2k−1
.

To calculate the complexity, let

Θ(k) = max
{
number of field operations required for A ∈ Kn×n

}
and note that

Θ(k) ≤ 2 ·Θ(k − 1) + 2 ·M
(
2k−1

)
.

Claim: Θ(k) ≤ 2k +M
(
2k
)
.

We prove this by induction on k. The base case k = 0 is clear, so assume that the claim
holds for k − 1 and calculate

Θ(k) ≤ 2 ·Θ(k − 1) + 2 ·M
(
2k−1

)
≤ 2 ·

(
2k−1 +M

(
2k−1

))
+ 2 ·M

(
2k−1

)
(∗)
< 2k +M

(
2k
)
.

Because 2k−1 < n, the assertion follows from the claim, (∗) and (∗∗):

Θ(k) ≤ 2k +M
(
2k
) (∗)
< 2n+M(2n)

(∗)
≤ 2n+ 8M(n) ∈ O(M(n)).

4 A Computational View towards Linear Algebra 46

We can now state the central algorithm of this section, which allows us to transform
a given matrix into simpler ones.

Algorithm 4.5.

Input: A ∈ Km×n

Output: r = rank(A) and matrices L, Q, P , U , such that

L ·Q · A · P =

()
U r

0 m− r

n

∈ Km×n

and

(a) L ∈ Km×m is a lower triangular matrix with ones on the diagonal;

(b) Q ∈ Km×m is a permutation matrix;

(c) P ∈ Kn×n is a permutation matrix;

(d) U ∈ Kr×n is an upper triangular matrix with non-zero diagonal entries.

Additionally, if rank(A) = m, then Q = Im.

(1) If A =
(
0 · · · 0

)
∈ K1×n: return L = (1) ∈ K1×1, Q = (1) ∈ K1×1, P = In ∈

Kn×n, U ∈ K0×n.

(2) If A =
(
a1 · · · an

)
∈ K1×n: Find i ∈ {1, . . . , n} minimal such that ai ̸= 0

and let P denote the matrix in Kn×n corresponding to the transposition
(
1 i

)
.

Return P , L = (1) ∈ K1×1, Q = (1) ∈ K1×1, U = A · P .

(3) Set m1 := ⌊m2 ⌋, m2 := ⌈m2 ⌉ and write

A =

()
B m1

C m2

n

.

(4) By recursively applying this algorithm to B ∈ Km1×n, compute L1, Q1, P1 with

L1 ·Q1 ·B · P1 =

()
U1 r1

0 m1 − r1

n

.

(5) Write

L1 :=

()
Lt 0 r1

Ll Lr m1 − r1

r1 m1 − r1

, Q1 :=

()
Qt r1

Qb m1 − r1

m1

, U1 :=
()
E U ′

1 r1

r1 m− r1

and compute

D := CP1 =
(
F D′) , G := D′ − FE−1U ′

1 ∈ Km2×(n−r1).

4 A Computational View towards Linear Algebra 47

(6) By recursively applying this algorithm to G ∈ Km2×(n−r′1), calculate L2, Q2, P2,
such that

L2 ·Q2 ·G · P2 =

()
U2 r2

0 m2 − r2

n− r1

.

(7) Return

L =

 Lt 0 0 r1

−L2Q2FE
−1Lt L2 0 m2

Ll 0 Lr m1 − r1

r1 m2 m1 − r1

, Q =

 Qt 0 r1

0 Q2 m2

Qb 0 m1 − r1

m1 m2

,

P = P1 ·
()
Ir1 0 r1

0 P2 n− r1

r1 n− r1

, U =

()
E U ′

1P2 r!

0 U2 r2

r1 n− r1

.

Proof (of correctness). We prove the correctness by induction onm. The base casem = 1
(corresponding to the steps (1) and (2) of the algorithm) is straightforward to check. Thus
we may assume m > 1 and that all recursive calls are correct. Then we have

L ·Q · A · P =

 LtQt 0
−L2Q2FE

−1LtQt L2Q2

LlQt + LrQb 0

 · (BP1

D

)
·
(
Ir1 0
0 P2

)

(4)
=

 U1 r1

L2Q2(D − FE−1U1) m2

0 m1 − r1

n

·
(
Ir1 0
0 P2

)

=

E U ′
1P2

0 L2Q2GP2

0 0

 (6)
=

()
U r1 + r2

0 m1 +m2

n

.

Additionally, if r = m, then r1 = m1 and r2 = m2 by the form of U . Thus by the inductive
hypothesis, we have Q1 = Im1 and Q2 = Im2 . Therefore, Qt = Q1 and Qb ∈ K0×r1 , so
Q = Im by definition of Q.
Finally, that r = rank(A) is part of Theorem 4.7.

Lec 19
2021-12-23

Theorem 4.6. Algorithm 4.5 requires O(
(
n
m
+ 1
)
M(m)) field operations for A ∈ Km×n.

Proof. Fix n0 ∈ N>0 and consider for k ∈ N

Θ(k) = max
{
number of field operations required for A ∈ Km×n with m ≤ 2k, n ≤ n0

}
.

4 A Computational View towards Linear Algebra 48

For each k, we may choose A ∈ Km×n such that it achieves the maximum Θ(k) (i.e. it is
a “worst case” input of the algorithm). By definition, m1,m2 ≤ 2k−1. The only steps in
the algorithm that involve field operations are the steps (4)-(7), so we investigate their
complexity.

(4) Because m1 ≤ 2k−1, the recursive call requires at most Θ(k − 1) field operations.

(5) By Proposition 4.4, inverting E requires O(M(2k−1)) field operations. Furthermore,
computing the products C ·P1 and F ·E−1 needs at most M(2k−1) field operations
each. By splitting U ′

1 into ⌈n−r1
2k−1 ⌉ blocks of size r1 × 2k−1 (the last block might be

smaller), we can compute the product (FE−1) · U ′
1 in at most ⌈n−r1

2k−1 ⌉ ·M(2k−1) ≤(
21−kn+ 1

)
·M(2k−1) field operations.

Calculating the difference of two m2 × (n − r1) matrices as in the definition of G
amounts to

m2(n− r1) ≤ 2k−1n ≤ 21−kn ·M(2k−1)

field operations, because 22k−2 ≤M(2k−1) by (∗∗).

(6) Since m2 ≤ 2k−1, the recursive call needs at most Θ(k − 1) field operations.

(7) Note that F · E−1 has already been computed in step (5) and that any product
where one of the two matrices is a permutation matrix does not demand any field
operations. The remaining two products of matrices of size ≤ 2k−1 amount to at
most 2 ·M(2k−1) field operations and multiplying the resulting m2 × r1 matrix by

−1 needs m2 · r1 ≤ (2k−1)2
(∗∗)
≤ M(2k−1) field operations.

Therefore, there exists a constant C ∈ R>0, such that for all k ∈ N>0, the total cost is
upper bounded by

Θ(k) ≤ 2Θ(k − 1) +
((
21−kn+ 1

)
+ 21−kn+ C

)
·M(2k−1).

According to (∗), we have M(2k−1) < 1
4
M(2k), so by replacing C with C + 1, we obtain

Θ(k) ≤ 2Θ(k − 1) +
(
2−kn+ C

)
·M(2k).

Claim: Θ(k) ≤
(
2−kn1−2−kϵ

1−2−ϵ + 2C
(
1− 2−k

))
·M(2k).

We prove this by induction on k. The base case k = 1 is correct as Θ(0) = 0 by step (1)
and (2) of the algorithm.
Assuming the assertion holds true for k − 1, we use the inductive hypothesis and (∗) in
the form M(2k−1) ≤ 2−2−ϵ ·M(2k) to calculate:

Θ(k) ≤ 2Θ(k − 1) +
(
2−kn+ C

)
·M(2k)

≤
(
2−k+1n

1− 2−kϵ+ϵ

1− 2−ϵ
+ 2C

(
1− 2−k+1

))
·M(2k−1) +

(
2−kn+ C

)
·M(2k)

≤
(
2−k−1−ϵn

1− 2−kϵ+ϵ

1− 2−ϵ
+ 2−1−ϵC

(
1− 2−k+1

)
+ 2−kn+ C

)
·M(2k)

≤
(
2−kn

(
2−1−ϵ1− 2−kϵ+ϵ

1− 2−ϵ
+ 1

)
+ 2C

(
2−2−ϵ

(
1− 2−k+1

)
+

1

2

))
·M(2k).

4 A Computational View towards Linear Algebra 49

Now the claim follows from the following three estimations:

2−1−ϵ1− 2−kϵ+ϵ

1− 2−ϵ
+ 1 = 2−1−ϵ · 2− 2−kϵ+ϵ − 2−ϵ

1− 2−ϵ
=

1

2
· 2

1−ϵ − 2−kϵ − 2−2ϵ

1− 2−ϵ
,

21−ϵ − 2−2ϵ = −
(
2−ϵ
)2

+ 2 · 2−ϵ − 1 + 1 = −
(
2−ϵ − 1

)2
+ 1 ≤ 1,

2−2−ϵ
(
1− 2−k+1

)
+

1

2
= 2−(1+ϵ)

(
1

2
− 2−k

)
+

1

2
<

1

2
− 2−k +

1

2
= 1− 2−k.

Having established the claim, we can now finish the proof. To that end, let B ∈ Km×n

be an arbitrary matrix and choose k ∈ N minimal such that m ≤ 2k. Then by the claim
the maximal number of field operations for B is upper bounded by

Θ(k) ≤
(
2−kn

1

1− 2−ϵ
+ 2C

)
M(2k)

≤
(
n

m

1

1− 2−ϵ
+ 2C

)
M(2m)

(∗)
≤ 8max

{
1

1− 2−ϵ
, 2C

}(n
m

+ 1
)
M(m) ∈ O

((n
m

+ 1
)
M(m)

)
.

We note that a collection of matrices as in Algorithm 4.5 gives rise to the decompo-
sition

A = Q−1 · L−1 ·
(
U
0

)
· P−1

of A. If Q = Im (e.g. if rank(A) = m), then A = L−1 ·
(
U
0

)
· P−1 is called a LUP-

decomposition. If in addition we have P = In, then A = L−1

(
U
0

)
constitutes a LU-

decomposition.

We can now show that a decomposition similar to that in the algorithm (but slightly
more general) indeed allows us to determine many important properties of the original
matrix.

Theorem 4.7. For A ∈ Km×n let L,Q ∈ GLm(K), P ∈ GLn(K), E ∈ GLr(K) and
U ∈ Kr×(n−r) with

L ·Q · A · P =

(
E U
0 0

)
Then the following statements are true:

(a) We have rank(A) = r.

(b) The columns of P ·
(
E−1U
−In−r

)
are a basis of ker(A).

(c) Writing

L =

(
L1

L2

)
,

a linear system Ax = b ∈ Km is solvable if and only if L2 ·Q · b = 0.

In that case, x = P ·
(
E−1L1

0

)
·Q · b is a solution.

4 A Computational View towards Linear Algebra 50

(d) If A ∈ GLn(K) and L,Q ∈ SLn(K), then det(A) = det(E) · det(P)−1 and A−1 =
P · E−1 · L ·Q.

Proof.

(a) Because L,Q and P are invertible, rank(A) = rank(U) = r.

(b) Since

L ·Q · A · P ·
(
E−1U
−In−r

)
=

(
E U
0 0

)
·
(
E−1U
−In−r

)
= 0

and L and Q are invertible, all the columns are in ker(A). Furthermore, they form
a linearly independent subset with n− r elements and because dim(ker(A)) = n− r
by (a) and the dimension theorem, they even constitute a basis of ker(A).

(c) We first assume that the linear system is solvable; i.e. there exists x ∈ Kn, such
that Ax = b. Then(

E U
0 0

)
· P−1 · x = L ·Q · A · x = L ·Q · b =

(
L1Qb
L2Qb

)
and because the last m − r entries of the left column vector are necessarily zero,
the same must be true for the right one; that is, L2Qb = 0.
On the other hand, if L2 ·Q · b = 0, then x as defined is a solution:

Ax = A · P ·
(
E−1L1

0

)
·Q · b = Q−1L−1

(
E U
0 0

)
·
(
E−1L1

0

)
·Q · b

= Q−1 · L−1 ·
(
L1

0

)
·Q · b = Q−1 · L−1 ·

(
L1

L2

)
·Q · b = b.

(d) If A is invertible, then r = n by (a) and thus L · Q · A · P = E, implying A =
Q−1 · L−1 · E · P−1 Hence, the claim follows from the fact that the determinant is
multiplicative.

With the previous two theorems and the corresponding algorithm we have thus
completed our objective to reduce most operations of linear algebra to matrix mul-
tiplication and we have demonstrated that such decompositions can be computed in
O(
(
n
m
+ 1
)
M(m)) for a matrix A ∈ Km×n.

5 Algebraic Systems of Equations and Gröbner Bases 51

5 Algebraic Systems of Equations and Gröbner Bases
Lec 20
2022-01-115.1 Affine Varieties

Throughout this section, K denotes a field.
Given polynomials f1, . . . , fm ∈ K[x1, . . . , xn], how can we find their common roots; i.e.
ζ = (ζ1, . . . , ζn) ∈ Kn, such that fi(ζ) = 0 for all i ∈ {1, . . . ,m}?
In algebraic geometry, the set of common roots

V(f1, . . . , fm) := {ξ ∈ Kn : fi(ξ) = 0 ∀ i ∈ {1, . . . ,m}}

is called an affine variety. This is just the solution set of a system of polynomial equations.
If I = (f1, . . . , fm) is the ideal generate by m, then V(f1, . . . , fm) = V(I). In that case,
f1, . . . , fm is called an ideal basis of I. However, note that despite the name, the size of
an ideal basis is not unique.
In general, it is not easy to compute an affine variety V(f1, . . . , fm) or to even determine
if it is nonempty. However, Gröbner Bases will give us a systematic way to solve such
polynomial equations. Therefore, they constitute an essential tool in disciplines like
commutative algebra and algebraic geometry and their role can even be compared to
that of Gaussian elimination in linear algebra.

Example 5.1.

(a) Let f1 = x1x3x
2
4−2x2x24+x1x3−2x2, f2 = x1x3x4−2x2x4−1 and f3 = x1x

2
4+x1+2

∈ K[x1, . . . , x4]. Then (−x1x4) · f1 + (x1x
2
4 + x1) · f2 + f3 = 2, so I := (f1, f2, f3)

satisfies V(I) = ∅. Since 2 ∈ I, {1} is an alternative ideal basis for I.

(b) Let f1 = x3+x2y+xy+y2, f2 = x2y2+x2+y3+y, f3 = x3+xy ∈ K[x, y] and consider
I = (f1, f2, f3). Because x2 + y divides all three polynomials, |V(f1, f2, f3)| = ∞
for K = R.

5.2 The Univariable Polynomial Ring

We first consider the easy case where n = 1; that is, we want to compute the affine variety
V(f1, . . . , fm) of polynomials f1, . . . , fm ∈ K[x].
Because K[x] is a Euclidean ring, we can use the (extended) Euclidean algorithm (see
Algorithm 1.27), in order to compute h1, h2 ∈ K[x], such that gcd(f1, f2) = h1f1 + h2f2.
By iterating this, we obtain h1, . . . , hm ∈ K[x] with g := gcd(f1, . . . , fm) =

∑m
i=1 hifi.

Therefore, if fi(ξ) = 0 for all i ∈ {1, . . . ,m}, then g(ξ) = 0 and the reverse is also true,
as g divides all fi.
It follows that V(f1, . . . , fm) = V(g), which then can be computed numerically.

5.3 Resultant method

Before we actually turn to Gröbner bases, we want to sketch another method for the
same task, called the resultant method. For f, g ∈ K[x] \ {0}, we have

gcd(f, g) ̸= 1 ⇐⇒ res(f, g) = 0.

We now assume that K is algebraically closed. Then

gcd(f, g) ̸= 1 ⇐⇒ f, g have at least one common root.

5 Algebraic Systems of Equations and Gröbner Bases 52

This observation can be used to recursively obtain a common roots of f1, f2 ∈ K[x1, . . . , xn].
Indeed, if ζ = (ζ1, . . . , ζn−1) ∈ Kn−1, then there exists ζn ∈ K, such that f1(ζ1, . . . , ζn) =
f2(ζ1, . . . , ζn) = 0 if and only if

resxn(f1(ζ1, . . . , ζn−1, xn), f2(ζ1, . . . , ζn−1, xn)) = 0.

If we furthermore assume that degxn
(fi) = degxn

(fi(ζ)) for i ∈ {1, 2}, then first plug-
ging (ξ1, . . . , ξn−1) into the fi and then computing the resultant w.r.t. xn is the same
as first computing the resultant of f1, f2 ∈ (K[x1, . . . , xn−1])[xn] and then plugging in
(ξ1, . . . , ξn−1):

resxn(f1(ζ1, . . . , ζn−1, xn), f2(ζ1, . . . , ζn−1, xn)) = resxn(f1, f2)(ξ1, . . . , ξn−1).

Thus it suffices to determine solutions of resxn(f1, f2) ∈ K[x1, . . . , xn−1].
Iterating this, it suffices to find the roots of two polynomials in the univariable polynomial
ring.
This procedure cannot be easily generalized to m polynomials, so in that case, it needs
to be applied m− 1 times. This is not only computationally expensive but also theoret-
ically unsatisfying. We will see that Gröbner bases provide a much more sophisticated
framework for computing common roots of polynomials.

5.4 Hilbert’s Nullstellensatz

As another preliminary step, we recall Hilbert’s Nullstellensatz and the corresponding
terminology.
For a commutative ring R and an ideal I ⊂ R, the radical ideal of I is the ideal

√
I :=

{
r ∈ R : ∃ k ∈ N : ak ∈ I

}
⊂ R

and I is called radical if
√
I = I.

For a subset S ⊂ Kn, the vanishing ideal of S is the ideal

I(S) := {f ∈ K[x1, . . . , xn] : f(s) = 0 ∀ s ∈ S} ⊂ K[x1, . . . , xn].

Theorem 5.2 (Hilbert’s Nullstellensatz). Let K be an algebraically closed field and
I ⊂ K[x1, . . . , xn] an ideal. Then

I(V(I)) =
√
I

and in particular
V(I) = ∅ ⇐⇒ 1 ∈ I.

The theorem gives us rise to an inclusion-reversing bijective correspondence

{S ⊂ Kn affine variety} ←→ {I ⊂ K[x1, . . . , xn] radical ideal}
S 7−→ I(S)

V(I) ←−[I.

5 Algebraic Systems of Equations and Gröbner Bases 53

5.5 Monomial Orderings
Lec 21
2022-01-13One property that makes the polynomial ring in a single variable K[x] easier to work

with than a polynomial ring in multiple variables is that there is an obivous total order
on the monomials: We may say that a monomial xn is smaller than xm if and only if
n < m.
It is therefore a natural idea to try to define a “suitable” order on the multivariant
polynomial ring K[x1, . . . , xn]. However, to keep the theory as general as possible, one
considers a class of “suitable” orders instead of just a single one. They are calledmonomial
orderings.

Definition 5.3.

(a) Amonomial is a polynomial of the form xe11 · · · xenn . We denote the set of monomials
by M and write M(f) for the set of monomials occuring in f ∈ K[x1, . . . , xn]. A
term is a polynomial of the form c · t for t ∈M , c ∈ K \ {0}.

(b) A monomial ordering ≤ is a relation on M , such that

(i) ≤ is a total order; i.e. it is a partial order and all monomials are comparable.

(ii) 1 ∈M is the smallest element w.r.t. ≤; i.e. 1 ≤ t for all t ∈M .

(iii) ≤ is “compatible” with multiplication; i.e. for all t1, t2, s ∈ M with t1 ≤ t2,
we have s · t1 ≤ s · t2.

(c) For a given monomial order ≤ and a polynomial f ∈ K[x1, . . . , xn]\{0}, the leading
monomial LM(f) := max{M(f)} of f is the largest monomial occuring in f . The
corresponding coefficient is the leading coefficient LC(f) and the corresponding
term is the leading term LT(f). Furthermore, we set LM(0) = LC(0) = LT(0) =
0.

In particular, if s | t, then 1 ≤ t
s
implies s ≤ t, so any monomial ordering refines the

partial order given by division.
Because of the monoid isomorphism

(Nn,+)→ (M, ·), (k1, . . . , kn) 7→ xk11 . . . xknn ,

we may identify M with Nn. With this identification, the partial order on M defined by
division corresponds to the product order ≤ on Nn given by

(k1, . . . , kn) ≤ (l1, . . . , ln) :⇐⇒ k1 ≤ l1 ∧ · · · ∧ kn ≤ ln.

We now give some examples of important monomial orderings in the polynomial ring
K[x1, . . . , xn].

Example 5.4. Let t = xe11 · xenn and t′ = x
e′1
1 · x

e′n
n be two monomials.

(a) The lexicographic ordering ≤lex is defined to be

t ≤lex t
′ :⇐⇒ t = t′ ∨ ei < e′i for the smallest i ∈ {1, . . . , n} with ei ̸= e′i.

This monomial ordering is inspired by the typical order of words in a dictionary,
where words are compared by their first letter first and if they are equal by the
second one and so on.

5 Algebraic Systems of Equations and Gröbner Bases 54

(b) The graded lexicographic ordering ≤glex is similar, but also takes the degree of the
monomials into account:

t ≤glex t
′ :⇐⇒ t = t′ ∨ deg(t) < deg(t′) ∨ (deg(t) = deg(t′) ∧ t <lex t

′).

(c) The graded reverse lexicographic ordering ≤grevlex is a variation of the previous
order:

t ≤grevlex t
′ :⇐⇒ t = t′ ∨ deg(t) < deg(t′) ∨
(deg(t) = deg(t′) ∧ ei > e′i for the largest i ∈ {1, . . . , n} with ei ̸= e′i).

For example, in K[x1, x2, x3], we have

x22 <lex x1x3, x22 <glex x1x3 and x22 >grevlex x1x3.

For the remainder of this section, we fix an arbitrary monomial order ≤.

Proposition 5.5. For two polynomials f, g ∈ K[x1, . . . , xn], we have:

(a) LT(f · g) = LT(f) · LT(g),

(b) LM(f + g) ≤ max{LM(f),LM(g)}.

Proof.

(a) Write LT(f) = c · s and LT(g) = d · t for c, d ∈ K and s, t ∈M . For s′ ∈ M(f) and
t′ ∈ M(g), we have s′ ≤ s and t′ ≤ t, so s′ · t′ ≤ s · t′ ≤ s · t with equality if and only
if s = s′ and t = t′. Therefore, LT(f · g) = c · d · s · t = LT(f) · LT(g).

(b) Because every monomial occuring in f + g must occur in f or in g, the statement
is clear.

The first statement of the previous proposition essentially states that when taking the
product of two polynomials, their leading terms cannot cancel.

Lemma 5.6 (Dickson’s Lemma). Let S ⊂ M be a set of monomials. Then there is a
finite subset B ⊂ S, such that for all s ∈ S, there exists t ∈ B with t | s.
Such a subset B is called a basis of S.

Proof. We identify M with Nn and proceed by induction on n. The base case n = 1 is
easy: If S = ∅ we may use B = ∅ and otherwise we can use the fact that the natural
numbers are well ordered and set B = {min(S)}.
We now perform the induction step. For k ∈ N, consider

Sk :=
{
(e2, . . . , en) ∈ Nn−1 : (k, e2, . . . , en) ∈ S

}
⊂ Nn−1.

By the inductive hypothesis, there exist finite bases Bk ⊂ Sk and furthermore the set⋃
k∈NBk has some finite basis C. Since |C| <∞, there exists r ∈ N with C ⊂

⋃r
k=0Bk.

We claim that

B := {(e1, . . . , en) ∈ Nn : e1 ∈ {0, . . . , r}, (e2, . . . , en) ∈ Be1} ⊂ S

is a basis of S. By definition, B is finite. It is left to prove that for any e = (e1, . . . , en) ∈
S, there exists some element in B which is smaller or equal to it.

5 Algebraic Systems of Equations and Gröbner Bases 55

Because (e2, . . . , en) ∈ Se1 , there is (d2, . . . , dn) ∈ Be1 such that (d2, . . . , dn) ≤ (e2, . . . , en).
If e1 ≤ r, then (e1, d2, . . . , dn) ∈ B, so (e1, d2, . . . , dn) ≤ e. Otherwise, we use that
(d2, . . . , dn) ∈

⋃
k∈NBk to conclude that there must exist c = (c2, . . . , cn) ∈ C with c ≤ d.

In particular, there is k ∈ {0, . . . , r} such that c ∈ Bk, showing (k, c2, . . . , cn) ∈ B with
(k, c2, . . . , cn) ≤ (r, d2, . . . , dn) ≤ e.

In essence, Dickson’s lemma is really a statement about the product order on Nn. For
our purposes of monomial orderings, it yields a useful corollary.

Corollary 5.7. Every monomial ordering is a well ordering (i.e. a total order such that
every non-empty subset has a least element).

Proof. For a non-empty subset S ⊂ M there exists a finite basis B ⊂ S by Lemma 5.6
and because any monomial ordering is total, this set must have a least element, which is
then a least element of all of M .

5.6 Gröbner Bases

As before, we fix an arbitrary monomial ordering ≤. In particular, any uniqueness claims
in this section only apply once the monomial ordering is chosen.

Definition 5.8.

(a) For a set S ⊂ K[x1, . . . , xn], the leading ideal of S is defined to be

L(S) := (LM(f) : f ∈ S)

=

{
r∑

i=1

gi LM(fi) : gi ∈ K[x1, . . . , xn], fi ∈ S, r ∈ N

}
= {g ∈ K[x1, . . . , xn] : ∀ t ∈ M(g) ∃ f ∈ S : LM(f) | t}.

(b) For an ideal I ⊂ K[x1, . . . , xn], a finite subset G ⊂ I is called a Gröbner basis of
I (w.r.t. the chosen monomial ordering) if L(G) = L(I).

We first observe that that the name “basis” is justified as any Gröbner basis of an
ideal indeed generates it.

Proposition 5.9. Let G ba a Gröbner basis of the ideal I ⊂ K[x1, . . . , xn]. Then the
ideal (G) generated by G is equal to I.

Proof. It is clear that (G) ⊂ I. For the other inclusion, assume for contradiction that
there exists f ∈ I \ (G). By Corollary 5.7, we may additionally suppose that f is minimal
with this property.
Since LM(f) ∈ L(G), there exists g ∈ G with LM(g) | LM(f). Thus the polynomial

f̃ := f − LT(f)
LT(g)

· g satisfies LM
(
f̃
)
< LM(f) and f̃ ∈ (G) if and only if f ∈ (G).

Therefore, the existence of f̃ contradicts the minimality of f .

Example 5.10. The ideal I = K[x] has many bases, e.g. {1} or {x, x+ 1}. The first set
is a Gröbner basis but the second is not, because L({x, x+ 1}) = (x) but L(I) = L(M) =
K[x].

5 Algebraic Systems of Equations and Gröbner Bases 56

Definition 5.11. An ideal I ⊂ K[x1, . . . , xn] is called monomial, if it can be generated
by monomials.

In particular, any monomial ideal generated by finitely many monomials m1, . . . ,mr

has the Gröbner basis {m1, . . . ,mr}. It is also clear that any principal ideal is a Gröbner
basis. Lec 22

2022-01-18
Theorem 5.12. Every ideal I ⊂ K[x1, . . . , xn] has a Gröbner basis.
In particular, any ideal in K[x1, . . . , xn] is finitely generated, so K[x1, . . . , xn] is Noethe-
rian.

Proof. Let S := {LM(f) | f ∈ I \ {0}} ⊂ M . By Lemma 5.6, there exist f1, . . . , fr ∈ I,
such that {LM(f1), . . . ,LM(fr)} is a basis of S, so G := {f1, . . . , fr} ⊂ I is a Gröbner
basis of I.

This result is generalized by Hilbert’s basis theorem, which states that every polyno-
mial ring over a Noetherian ring is Noetherian.

Since we now know that any ideal has a Gröbner basis, the next natural question is
how to compute them. To that end, we introduce the notion of normal forms.

Definition 5.13. Let S = {g1, . . . , gr} ⊂ K[x1, . . . , xn] be a finite set of polynomials and
f ∈ K[x1, . . . , xn].

(a) f is in normal form w.r.t. S if none of the monomials t ∈ M(f) occuring in f are
divisible by any of the LM(gi) for i ∈ {1, . . . , r}.

(b) A polynomial f ∗ ∈ K[x1, . . . , xn] is called a normal form of f if

(i) f ∗ is in normal form;

(ii) there exist hi ∈ K[x1, . . . , xn], i ∈ {1, . . . , r} with LM(higi) ≤ LM(f) such
that

f ∗ − f =
n∑

i=1

higi.

In particular, any normal form f ∗ of f w.r.t. S is congruent to f modulo (S).

Example 5.14. Consider the set S := {x, x+ 1} ⊂ K[x].

(a) f = 1 is in normal form w.r.t. S, even though f ≡ 0 mod (S).

(b) f = x has normal forms 0 and −1. In particular, this shows that normal forms
need not be unique.

We can give a straightforward algorithm to compute a normal form of a given poly-
nomial.

Algorithm 5.15.

Input: S := {g1, . . . , gr} ⊂ K[x1, . . . , xn], f ∈ K[x1, . . . , xn].

Output: A normal form f ∗ of f and h1, . . . , hr as in Definition 5.13.

(1) Set f ∗ = f , hi = 0 for i ∈ {1, . . . , r}.

5 Algebraic Systems of Equations and Gröbner Bases 57

(2) Repeat:

(3) Form M := {(t, i) : t ∈ M(f ∗), i ∈ {1, . . . , r},LM(gi) | t}.

(4) If M = ∅: return f ∗, h1, . . . , hr.

(5) Choose (t, i) ∈ M such that t is maximal. If there are multiple second
entries with that same first entry, use any method to pick the second entry
(e.g. by always choosing the second entry minimal).

(6) Let c ∈ K denote the coefficient of t in f ∗ and set

f ∗ := f ∗ − ct

LT(gi)
gi, hi := hi −

ct

LT(gi)
.

Proof (of correctness). At the beginning of the algorithm, we have f ∗ − f =
∑n

i=1 higi
and LM(higi) ≤ LM(f) and this holds true throughout the algorithm.
The algorithm terminates whenM is empty and in that case f ∗ is indeed a normal form of
f . Because t = LT

(
ct

LT(gi)
gi
)
, the leading term of the new f ∗ in step (6) is strictly smaller

than that of the old one, so the sequence of t’s is strictly decreasing. Since any monomial
ordering is a well ordering (Corollary 5.7), this implies that the algorithm terminates
after finitely many steps.

Our next result states that normal forms w.r.t. Gröbner bases are unique and that
two Gröbner bases of the same ideal give rise to the same normal forms.

Theorem 5.16. Let G be a Gröbner basis of an ideal I ⊂ K[x1, . . . , xn].

(a) Every polynomial f ∈ K[x1, . . . , xn] has exactly one normal form w.r.t. G. Thus
we obtain a map

NFG : K[x1, . . . , xn]→ K[x1, . . . , xn], f 7→ f ∗.

(b) NFG is K-linear and ker(NFG) = I.

(c) If G̃ is another Gröbner basis of I (w.r.t. the same monomial ordering), then
NFG = NFG̃.

Proof. We prove (a) and (c) together. Let f ∈ K[x1, . . . , xn] and suppose that f ∗

is a normal form of f w.r.t. G and that f̃ is a normal form of f w.r.t. to G̃. Since
f ∗ − f̃ ∈ I, there exist g ∈ G and g̃ ∈ G̃ such that

LM(g) | LM
(
f ∗ − f̃

)
and LM(g̃) | LM

(
f ∗ − f̃

)
.

If f ∗ − f̃ ̸= 0, then LM
(
f ∗ − f̃

)
∈ M

(
f ∗ − f̃

)
and LM

(
f ∗ − f̃

)
∈ M(f ∗) ∪M

(
f̃
)
,

which contradicts the fact that f ∗ and f̃ are in normal form. This shows (a) and
(c) and it remains to prove (b).
To that end, let f, g ∈ K[x1, . . . , xn] and c ∈ K. We observe that

h := NFG(f + cg)− NFG(f)− cNFG(g)

5 Algebraic Systems of Equations and Gröbner Bases 58

satisfies h ≡ f + cg − f − cg = 0 mod I, so h ∈ I, which means that there exists
r ∈ G with LM(r) | LM(h). But h is in normal form w.r.t. to G, so h = 0 and NFG

is K-linear.
Finally, any f ∈ I satisfies NFG(f) = 0 and conversely if f ∈ ker(NFG), then f ≡ 0
mod I, so f ∈ I.

We can now discuss some first applications of Gröbner bases.

Application 5.17. Let I ⊂ K[x1, . . . , xn] be an ideal and G ⊂ I a Gröbner basis of I.

(1) We have 1 ∈ I if and only if G contains a non-zero constant, so we can decide
whether an ideal is proper or not.
If K is algebraically closed, then by Hilbert’s Nullstellensatz (Theorem 5.2) this is
equivalent to V(I) = ∅.

(2) More generally, we can determine if an arbitrary polynomial f ∈ K[x1, . . . , xn] is
contained in I by computing its normal form NFG(f) and checking if NFG(f) = 0.

(3) We can “honestly” compute in the factor ring K[x1, . . . , xn]/I, because NFG induces
an embedding (injective K-linear map) K[x1, . . . , xn]/I ↪→ K[x1, . . . , xn].

5.7 Buchberger’s Algorithm

Definition 5.18. Let f, g ∈ K[x1, . . . , xn] \ {0} and set t := gcd(LM(f),LM(g)). Then
the S-polynomial of f and g is defined to be

S(f, g) :=
LT(g)

t
f − LT(f)

t
g.

The main motivation behind this construction is that the leading terms of the two
summands in the definition are precisely LC(f) · LC(g) · lcm(LM(f),LM(g)) (because
lcm(h, h′) · gcd(h, h′) = h · h′ for all h, h′ in a factorial ring), so they cancel. Lec 23

2022-01-20
Example 5.19. Consider the polynomials f = x2 + y2, g = xy ∈ K[x, y] equipped with
the lexicographic ordering x > y. We calculate

S(f, g) =
xy

x
· f − x2

x
· g = y3.

Buchberger’s criterion gives an equivalent characterization of a finite set being a
Gröbner basis. It gives rise to Buchberger’s algorithm, which brings Gröbner bases into
the realm of computability.

Theorem 5.20 (Buchberger’s Criterion).
For a finite set G ⊂ K[x1, . . . , xn] \ {0}, the following statements are equivalent:

(a) G is a Gröbner basis of the ideal (G) generated by it.

(b) For all f, g ∈ G, S(f, g) has normal form 0 w.r.t. G.

5 Algebraic Systems of Equations and Gröbner Bases 59

Proof. IfG is a Gröbner basis of (G), then S(f, g) ∈ (G) for any f, g ∈ G, so NFG(S(f, g)) =
0 by Theorem 5.16.
For the other direction, write G = {g1, . . . , gr} ⊂ K[x1, . . . , xn] \ {0} and assume for
contradiction that G is not a Gröbner basis of (G). This means that there exists f ∈ (G)
with LM(f) /∈ L(G). Writing f =

∑r
i=1 gihi with hi ∈ K[x1, . . . , xn] \ {0}, we consider

the set{
max{LM(gihi) : i ∈ {1, . . . , r}} : hi ∈ K[x1, . . . , xn] \ {0},

r∑
i=1

gihi = f

}
.

Because any monomial ordering is a well ordering (Corollary 5.7), we may assume that
our hi correspond to the smallest element t := max{LM(gihi) : i ∈ {1, . . . , r}} of this set.
Furthermore, we have LM(f) ∈ M(gihi) for some i ∈ {1, . . . , r} and because LM(f) /∈
L(G), this implies LM(f) < LM(gihi), so in particular LM(f) < t, showing that the
coefficient of t in

∑r
i=1 gihi is zero. Setting

ci :=

{
LC(hi) LM(gihi) = t

0 otherwise
∈ K,

this means that
r∑

i=1

ci LC(gi) = 0. (∗)

By reordering the gi we may assume that c1 ̸= 0. Now let l ∈ {2, . . . , r} and with
tl = lcm(LM(gl),LM(g1)), we have

S(gl, g1) =
LC(g1)tl
LM(gl)

gl −
LC(gl)tl
LM(g1)

g1.

Because the leading coefficients cancel, LM(S(gl, g1)) < tl. By assumption, this S-
polynomial has normal form 0; i.e. there exist hl,j ∈ K[x1, . . . , xn], such that

S(gl, g1) =
r∑

j=1

hl,jgj and LM(hl,jgj) ≤ LM(S(gl, g1)) < tl ∀ j ∈ {1, . . . , r}.

Suppose cl ̸= 0. Then we have LM(hl) LM(gl) = t = LM(h1) LM(g1) and thus tl | t.
Therefore,

sl :=
t

tl
S(gl, g1) =

r∑
j=1

t

tl
hl,jgj satisfies LM

(
t

tl
hl,jgj

)
< t (∗∗)

and can also be written as

sl = LC(g1) LM(hl)gl − LC(gl) LM(h1)g1.

We obtain
r∑

l=2

clsl
(∗)
=

r∑
l=2

cl(LC(g1) LM(hl)gl − LC(gl) LM(h1)g1)

+

(
c1 LC(g1) +

r∑
l=2

cl LC(gl)

)
LM(h1)g1

=
r∑

l=1

cl LC(g1) LM(hl)gl = LC(g1) ·
r∑

l=1

cl LM(hl)gl.

5 Algebraic Systems of Equations and Gröbner Bases 60

Because LC(g1) ̸= 0, this equation together with (∗∗) yields the existence of h̃j ∈
K[x1, . . . , xn] \ {0}, such that

g :=
r∑

l=1

cl LM(hl)gl =
r∑

j=1

h̃jgj and LM
(
h̃jgj

)
< t ∀ j ∈ {1, . . . , r}.

Finally, we have

f = f − g + g =
r∑

j=1

(
hj − cj LM(hj) + h̃j

)
gj

and for all j ∈ {1, . . . , r}:

LM
((
hj − cj LM(hj) + h̃j

)
gj

)
=

LM
(
(hj − LT(hj) + h̃j)gj

)
if cj ̸= 0

LM
(
(hj + h̃j)gj

)
if cj = 0

.

However, this leading monomial is less than t: In the first case, this is due to the leading
monomials of hjgj canceling; in the second case, all hjgj are less than t anyway. This
contradicts the minimality of t and thus completes the proof.

Algorithm 5.21 (Buchberger’s Algorithm).

Input: S ⊂ K[x1, . . . , xn] finite.

Output: A Gröbner basis G of the ideal (S) generated by S.

(1) Set G := S \ {0}.

(2) For g, h ∈ G:

(3) Compute the S-polynomial s := S(g, h) and a normal form s∗ of s w.r.t. G.

(4) If s∗ ̸= 0: Set G = G ∪ {s∗}.

(5) Return G.

Proof (of correctness). Because all s∗ lie in (S), it follows directly from Theorem 5.20
that the algorithm yields a Gröbner basis of (G) = (S) if it terminates. In order to see
that the algorithm always terminates after finitely many steps, assume for contradiction
that this is not the case. Let Gl denote G after the l-th step and consider

Sl := {LM(g) : g ∈ Gl}, S =
⋃
l∈N

Sl.

By Lemma 5.6, there exists a finite basis B of S and because the Sr are increasing,
this basis must be contained in some Sr. But by assumption s∗ ̸= 0 and because s∗

is in normal form, we have LM(s∗) /∈ L(Gr). But this means that no g ∈ Gr satisfies
LM(g) | LM(s∗) even though LM(s∗) ∈ Sr+1 ⊂ S, which contradicts the fact that B is a
basis.
With a little more theorey, the argument becomes much easier: Because L(G) is strictly
increasing in each iteration, the algorithm must terminate as K[x1, . . . , xn] is Noetherian.

5 Algebraic Systems of Equations and Gröbner Bases 61

This presentation of the algorithm is highly unoptimized and only serves to demon-
strate the basic idea. Indeed, many optimizations are possible. For example, there is
no need to check pairs (g, h) for which (h, g) was already considered or which were al-
ready checked in a previous iteration. A somewhat less obvious optimization is to ignore
pairs whose leading monomials are coprime, because the corresponding S-polynomial will
always have 0 as a normal form. Lec 24

2022-01-25
Example 5.22. Like Example 5.19, let f = x2 + y2, g = xy ∈ K[x, y] and S = {f, g}
with the lexicographic ordering x > y. Because h := S(f, g) = y3 is in normal form w.r.t.
S, we set G = {f, g, h}. The calculation

S(f, h) = y3f − x2h = y5 =⇒ NFG(S(f, h)) = 0

S(g, h) = 0 (because the S-polynomial of two monomials is always 0)

shows that G is a Gröbner basis of (S).

We now introduce reduced Gröbner bases, which are essentially Gröbner bases that
contain no redundant elements.

Definition 5.23. A Gröbner basis G is called reduced, if every g ∈ G is in normal form
w.r.t. G \ {g} and all elements of G are monic (LC(g) = 1 for all g ∈ G).

Computing a reduced Gröbner basis from an unreduced one is straightforward: Iter-
atively replace all elements g ∈ G by a normal form of g w.r.t. G \ {g}. Then remove all
zero polynomials and normalize the remaining elements.
Moreover, unlike ordinary Gröbner bases, reduced Gröbner bases are unique.

Theorem 5.24. Every ideal I ⊂ K[x1, . . . , xn] has a unique reduced Gröbner basis.

Proof. We already saw that any Gröbner basis gives rise to a reduced Gröbner basis, so we
only have to prove uniqueness. To that end, let G,G′ be reduced Gröbner bases of I and
take g ∈ G. Because G′ is a Gröbner basis, there exists g′ ∈ G′, such that LM(g′) | LM(g)
and since G is also a Gröbner basis, there is g′′ ∈ G with LM(g′′) | LM(g′). Since g is in
normal form w.r.t. G \ {g}, we have g = g′′ and LM(g) = LM(g′).
Claim: g = g′.
Aiming for contradiction, assume that g − g′ ∈ I \ {0}. Then t := LM(g − g′) ∈ L(G) ∩
L(G′) satisfies t ∈ M(g) ∪ M(g′) and since both g and g′ have leading coefficient 1, it
follows t < LM(g). If t ∈ M(g), there exists g̃ ∈ G with LM(g̃) | t since t ∈ L(G). But
g̃ ̸= g, so this would mean that g is not in normal form w.r.t. G \ {g}, contradicting our
assumption. The analogous argument applies if t ∈ M(g′), so the claim follows.
The claim implies that G ⊂ G′ and the other inclusion follows by symmetry.

We look at the special case of linear equations; i.e. a matrix A ∈ Km×n. Choosing a
monomial ordering with x1 > x2 > · · · > xn, we observe that a row echolon form obtained
by Gaussian elimination is a Gröbner basis of the original system of linear equations, be-
cause the leading monomials are coprime and thus their S-polynomials have normal form
0. Furthermore, a reduced row echolon form precisely corresponds to a reduced Gröbner
basis. In particular, this shows that the reduced row echolon form of a matrix over a field
is unique.

5 Algebraic Systems of Equations and Gröbner Bases 62

Analyzing the complexity of Buchberger’s algorithm (Algorithm 5.21) is extremely
hard. Indeed, no upper bound for its running time is known.
One result is that for a given finite set S ⊂ K[x1, . . . , xn], an upper bound for the degree
of the elements in a resulting Gröbner basis G is

2 ·
(
d2

2
+ d

)2n−1

with d = max{deg(f) : f ∈ S},

which is “doubly exponential” in n. Regardless, Buchberger’s algorithm often works in
practice in reasonable time. There also exist many variants, for example one can keep
track of how the polynomials in G arise as K[x1, . . . , xn]-linear combination of the input
polynomials.

6 Applications of Gröbner Bases 63

6 Applications of Gröbner Bases

In this section, we highlight some applications of Gröbner bases, which should serve to
underline their usefulness.

6.1 Elimination Ideals

Definition 6.1.

(a) Let I ⊂ K[x1, . . . , xn] and let l ∈ {1, . . . , n}. Then the intersection

Il := K[x1, . . . , xl] ∩ I ⊂ K[x1, . . . , xl]

is an ideal and is called the l-th elimination ideal.

(b) A monomial ordering ≤ is called an l-elimination ordering if

xki < xj ∀ 1 ≤ i ≤ l < j ≤ n, k ∈ N.

The concept of l-elimination orderings simply describes those monomial orderings for
which all monomials in K[x1, . . . , xl] ⊂ K[x1, . . . , xn] are less than xj for all j > l.
It is also common to define elimination ideals for arbitrary subsets S ⊂ {x1, . . . , xn}
instead of just for subsets of the form {x1, . . . , xl}. Because applying a permutation
to the indeterminates yields a K-algebra automorphism K[x1, . . . , xn] → K[x1, . . . , xn],
these definitions are equivalent.
A similar construction works for l-elimination orderings: Any S-elimination ordering
≤ gives rise to a |S|-elimination ordering (as in our definition) ≤′ by first applying a
permutation on the monomials which maps S to the first |S| indeterminants and then
comparing the resulting monomials using ≤.
Therefore, we will also use S-elimination ideals and orderings when needed.
Note that any monomial ordering on K[x1, . . . , xn] trivially is a n-elimination ordering.

Example 6.2.

(a) The lexicographic ordering ≤lex with x1 < x2 < · · · < xn is an l-elimination ordering
for all l.

(b) The graded lexicographic ordering ≤glex and its reversed version ≤grevlex are no
l-elimination orderings, except in the trivial case l = n.

(c) Let ≤ be any monomial ordering on K[x1, . . . , xn]. We construct a new monomial
ordering ≤′ by defining for s = xe11 · · · · · xenn and t = xd11 · · · · · xdnn :

s ≤′ t :⇐⇒
n∑

i=l+1

di <

n∑
i=l+1

ei ∨

(
n∑

i=l+1

di =
n∑

i=l+1

ei ∧ s ≤ t

)

This is an l-elimination ordering.

The followig theorem states that Gröbner bases w.r.t. l-elimination ideals restrict to
Gröbner bases of the elimination ideal, which is very convenient for computations.

6 Applications of Gröbner Bases 64

Theorem 6.3. Let G be a Gröbner basis of I ⊂ K[x1, . . . , xn] w.r.t. an l-elimination
ordering. Then

Gl := G ∩K[x1, . . . , xl]

is a Gröbner basis of the elimination ideal Il w.r.t. the restricted monomial ordering.

Proof. It is clear that Gl ⊂ Il. For the other inclusion, let f ∈ Il \ {0} and t := LM(f).
As G is a Gröbner basis, there exists g ∈ G, such that LM(g) | LM(f) and since f ∈
K[x1, . . . , xl], we have that M(f) ⊂ K[x1, . . . , xl] and thus LM(g) ∈ K[x1, . . . , xl]. But
because we have an l-elimination ordering, this means that all monomials of g must lie
in K[x1, . . . , xl], which implies g ∈ K[x1, . . . , xl] and shows the claim.

Example 6.4. Like in Example 5.22 (but with x and y interchanged), let f = x2 + y2,
g = xy, h = x3 ∈ K[x, y] and set S := {f, g}, G := {f, g, h}. Then G is a Gröbner basis
of (S) w.r.t. the lexicographic ordering y > x, so the previous theorem shows that the
elimination ideal Ix = I ∩K[x] has Gröbner basis Gx = {x3}.

Lec 25
2022-01-27Our next goal is to give a geometric interpretation for the elimination ideal. To that

end, we define a topology on Kn.

Definition 6.5. The Zariski topology on Kn has the affine varieties as the closed sets;
i.e.

X ⊂ Kn is closed :⇐⇒ ∃ S ⊂ K[x1, . . . , xn] : V(S) = X.

It is equivalent to demand that S in the definition above is also an ideal or even a
radical ideal. Because ∅ = V(K[x1, . . . , xn]) and K

n = V({0}), this is indeed a topology
as a consequence of the following lemma.

Lemma 6.6.

(a) For two ideals I, J ⊂ K[x1, . . . , xn], we have V(I) ∪ V(J) = V(I ∩ J).

(b) For an arbitrary collection (Ji)i∈I of ideals (with index set I), we have
⋂

i∈I V(Ji) =
V
(⋃

i∈I Ji
)
.

Proof. (a) It is clear that V(I) ∪ V(J) ⊂ V(I ∩ J). To see the other inclusion, let
v ∈ V(I ∩ J) and assume that v /∈ V(I), so there exists f ∈ I, such that f(v) ̸= 0.
For any g ∈ J , we have f · g ∈ I ∩ J , so 0 = (f · g)(v) = f(v) · g(v). and it follows
that g(v) = 0. This shows v ∈ V(J).

(b) Because V(−) is inclusion-reversing, this is clear.

This defines a very coarse (“few open and closed sets”) topology. For example, in
the case that K = C, we observe that anything that is closed w.r.t. the Zariski topology
is also closed w.r.t. the usual Euclidean topology on Cn: Indeed, an affine variety is
just the intersection of the zero sets f−1(0) of polynomials f ∈ C[x1, . . . , xn], which are
continuous w.r.t. the Euclidean topology on Cn, so any affine variety is also closed w.r.t.
the Euclidean topology.
Note that all singletons and finite sets are closed w.r.t. the Zariski topology. On K1, the
closed sets are precisely the finite sets.
For an arbitrary subset X ⊂ Kn, its (topological) closure is by definition

X =
⋂

Y⊂Kn closed
X⊂Y

Y

6 Applications of Gröbner Bases 65

Any closed Y ⊂ Kn is of the form Y = V(I) for some ideal I ⊂ Kn. Since

X ⊂ Y ⇐⇒ X ⊂ V(I) ⇐⇒ I ⊂ I(X) =⇒ V(I(X)) ⊂ Y

and X ⊂ V(I(X)) is closed, it follows that

X = V(I(X)).

The following theorem gives some geometric meaning to the elimination ideal.

Theorem 6.7. For l ∈ {1, . . . , n} consider the coordinate projection

πl : K
n → Kl, (a1, . . . , an) 7→ (a1, . . . , al).

Assume that K is algebraically closed and let I ⊂ K[x1, . . . , xn] be an ideal. Then

V(Il) = πl(V(I)).

Proof. Let (a1, . . . , al) ∈ πl(V(I)), so there exist al+1, . . . , an ∈ K, such that (a1, . . . , an) ∈
V(I). Because any f ∈ Il = I ∩ K[x1, . . . , xl] satisfies f(a1, . . . , al) = f(a1, . . . , an) = 0
we have (a1, . . . , al) ⊂ V(Il) and thus πl(V(I)) ⊂ V(Il). Since V(Il) is closed, this shows
that πl(V(I)) ⊂ V(Il).
For the other inclusion, we first note that the statement

V(Il) ⊂ πl(V(I)) = V(I(πl(V(I)))),

is equivalent to
I(πl(V(I))) =

√
I(πl(V(I))) ⊂

√
Il.

by Hilbert’s Nullstellensatz (Theorem 5.2). Now let f ∈ I(πl(V(I))), which in particular
means that f ∈ K[x1, . . . , xl]. For (a1, . . . , an) ∈ V(I), we have

0 = f(πl(a1, . . . , an)) = f(a1, . . . , al) = f(a1, . . . , an).

Hilbert’s Nullstellensatz implies that f ∈ I(V(I)) =
√
I, so there exists k ∈ N such that

fk ∈ I. Finally, f ∈ K[x1, . . . , xl] shows that f
k ∈ K[x1, . . . , xl], so f ∈

√
Il.

Example 6.8. (a) We first give a counterexample showing that the assumption that
K is algebraically closed is really needed for the theorem to be true.
For this, let I = (x2 + y2 + 1) ⊂ R[x, y]. Then V(I) = ∅ and π1(V(I)) = ∅, but
I1 = (0) (I is a Gröbner basis), showing that V(I1) = R ̸= ∅ = π1(V(I)).

(b) We now give an example demonstrating that the closure operation in the theorem
cannot be omitted. Consider I = (xy − 1), so V(I) is essentially an hyperbola.
Then I1 = (0) and V(I1) = K but π1(V(I)) = K \ {0}.
By considering this example over a finite field, we also otain another counterexample
similar to that in (a).

(c) LetK be algebraically closed and consider I = ((x+ 1)(y − 2), 4x2 − 4xy + y2) with
Gröbner basis G =

{
x2 − 2x+ 1

4
y2 + y − 2, (x+ 1)(y − 2), (y − 2)(y + 2)2

}
w.r.t.

the lexicographic ordering x > y. Eliminating x, we obtain I1 =
(
(y − 2)(y + 2)2

)
,

so the Theorem implies that π1(V(I)) = V(I1) = {±2}. Because finite sets are
always closed, it follows that π1(V(I)) = {±2}. Substituting this into G yields

6 Applications of Gröbner Bases 66

y = +2: x2 − 2x+ 1 = 0 =⇒ x = 1,

y = −2: x2 − 2x− 3 = 0 =⇒ x = −1.

In total, we conclude that V(I) = {(1, 2), (−1,−2)}.

The method in (c) can be generalized, which results in the following algorithm. It
allows us to solve systems of algebraic equations under the assumption that the field is
algebraically closed and the solution set is finite. Indeed, if the solution set is infinite, it is
not even clear how to represent it. This stands in contrast to the case of linear equations,
for which we could simply return a basis.

Algorithm 6.9 (Solving Systems of Algebraic Equations).
Let K be algebraically closed.

Input: f1, . . . , fm ∈ K[x1, . . . , xn].

Output: V((f1, . . . , fm)) if that set is finite and “∞” otherwise.

(1) Compute a (reduced) Gröbner basis G of (f1, . . . , fm) w.r.t. the lexicographic
ordering x1 < · · · < xn.

(2) Set M := {()} ⊂ K0.

(3) For l = 1, . . . , n:

(4) Set S := ∅.

(5) For (a1, . . . , al−1) ∈M :

(6) Define g := gcd({f(a1, . . . , al−1, xl) : f ∈ K[x1, . . . , xl] ∩G}).

(7) If g = 0: return “∞”.

(8) Set S := S ∪ {(a1, . . . , al) : al ∈ K, g(al) = 0}.

(9) Set M := S.

(10) Return M .

It should be noted that step (8) requires numerical methods in order to solve the
polynomial equation in a single variable. Lec 26

2022-02-01But elimination ideals are not only useful for computing affine varieties. They can
also be used to compute the intersection of two ideals, which we now briefly highlight.

Proposition 6.10. Let I, J ⊂ K[x1, . . . , xn] be two ideals and consider the ideal

L := (y · I, (1− y) · J) ⊂ K[x1, . . . , xn, y],

where y is another indeterminate. Then

I ∩ J = K[x1, . . . , xn] ∩ L.

6 Applications of Gröbner Bases 67

Proof. For f ∈ I ∩ J , we have f ∈ K[x1, . . . , xn] and f = y · f + (1 − y) · f ∈ L, so
I ∩ J ⊂ K[x1, . . . , xn] ∩ L.
For the other inclusion, let f ∈ K[x1, . . . , xn] ∩ L, so we can write

f =
r∑

i=1

y · hifi +
r+s∑

i=r+1

(1− y) · higi for some hi ∈ K[x1, . . . , xn, y], fi ∈ I, gi ∈ J.

By setting y = 0 first and then setting y = 1, the claim follows:

f =
r+s∑

i=r+1

hi(y = 0) · gi ∈ J, f =
r∑

i=1

hi(y = 1) · fi ∈ I.

6.2 Dimensions

For the solution spaces of linear equations, we have a useful notion of dimension. We
now introduce the analogous concept for affine varieties. We will then see that Gröbner
bases allow us to compute those dimensions.

Definition 6.11. Polynomials f1, . . . , fm ∈ K[x1, . . . , xn] are called algebraically inde-
pendent, if they obey no algebraic relation; i.e. for all polynomials F ∈ K[y1, . . . , ym] \
{0}, we have F (f1, . . . , fm) ̸= 0.
For an ideal I ⊂ K[x1, . . . , xn], the fi are called algebraically independent modulo
I, if their equivalence classes are algebraically independent in K[x1, . . . , xn]/I.

Example 6.12. Let xij ∈ K[x1, . . . , xn] be distinct indeterminants. They are alge-
braically independent module an ideal I ⊂ K[x1, . . . , xn] if and only if I∩K[xi1 , . . . , xim] =
{0}. Note that this is an elimination ideal.

Definition 6.13. The (Krull) dimension of an ideal I ⊊ K[x1, . . . , xn] is defined to be

dim(I) := sup{k ∈ N : ∃ f1, . . . , fk ∈ K[x1, . . . , xn] algebraically independent mod I}

Furthermore, we set dim(K[x1, . . . , xn]) := −1.
If K is algebraically closed, we define the (Krull) dimension of an affine variety X =
V(I) to be dim(X) := dim(I).

An equivalent definition of the Krull dimension is

dim(I) = trdegK{K[x1, . . . , xn]/I}.

The last part of the definition is well-defined, because two ideals I, J ⊂ K[x1, . . . , xn] with
V(I) = V(J) satisfy

√
I =

√
J by Hilbert’s Nullstellensatz (Theorem 5.2), and clearly

dim(I) = dim(
√
I) for any ideal I ⊂ K[x1, . . . , xn].

To distinguish the notations, we denote the (ordinary) dimension of a K-vector space V
by dimK(V).

It can be shown that this definition for affine varities agrees with the intuitive notion
of dimension: “points” are zero dimensional; “lines” are one dimensional, etc.
In order to develop some form of geometric interpretation, we introduce maps that

6 Applications of Gröbner Bases 68

“preserve” the structure of an affine variety. For affine varieties X = V(I) ⊂ Kn,
Y = V(J) ⊂ Km a morphism of affine varieties is a map of the form

f : X → Y, x 7→ (f1(x), . . . , fm(x))

for some polynomials f1, . . . , fm ∈ K[x1, . . . , xn].
Together with the affine varieties as objects, this defines the category of affine varieties.

Lemma 6.14. Let K be algebraically closed, X = V(I) ⊂ Kn an affine variety induced
by the ideal I ⊂ K[x1, . . . , xn] and f1, . . . , fm ∈ K[x1, . . . , xn] polynomials. Consider the
morphism of varieties f induced by the fi:

f : X → Km, x 7→ (f1(x), . . . , fm(x)).

Then f1, . . . , fm are algebraically independent mod I if and only if im(f) ⊂ Kn is dense.
In particular, k := dim(X) is the largest integer such that there exists a morphism
X → Kk with dense image.

Proof. Wemay view the fi and the elements of I as polynomials inK[y1, . . . , ym, x1, . . . , xn].
With the projection πy : K

m+n ↠ Km onto the first m coordinates, we have

im(f) = πy(V((f1 − y1, . . . , fm − ym) ∪ I)),

so Theorem 6.7 shows that the ideal

J := (I ∪ {f1 − y1, . . . , fm − ym})

satisfies im(f) = V(J ∩K[y1, . . . , ym]). Therefore, im(f) ⊂ Kn is dense if and only if
J ∩K[y1, . . . , ym] = (0).
It is left to show that this condition in turn is equivalent to the algebraic independence
mod I of the f1, . . . , fm. To that end, let F ∈ K[y1, . . . , ym] be a polynomial. Because
we have

F (y1, . . . , ym) ≡ F (f1, . . . , fm) mod J.

and F (f1, . . . , fm) ∈ K[x1, . . . , xn], it follows that

F ∈ J ⇐⇒ F (f1, . . . , fm) ∈ K[x1, . . . , xn] ∩ J.

Claim: I = K[x1, . . . , xn] ∩ J .
We have I ⊂ K[x1, . . . , xn] ∩ J by definition of J . For the other inclusion, write g ∈
K[x1, . . . , xn] ∩ J in the form

g =
r∑

i=1

higi +
m∑
i=1

li(fi − yi) with hi, li ∈ K[x1, . . . , xn, y1, . . . , ym], gi ∈ I.

Evaluating yi = fi for all i ∈ {1, . . . ,m} yields

g =
r∑

i=1

hi(y1 = f1, . . . , ym = fm)gi ∈ I,

6 Applications of Gröbner Bases 69

so the claim follows.
We conclude that

F ∈ J ∩K[y1, . . . , ym] ⇐⇒ F (f1, . . . , fm) ∈ I

and in particular

J ∩K[y1, . . . , ym] = (0) ⇐⇒ f1, . . . , fm are algebraically independent mod I,

which establishes the claim.

Our next goal is to derive an easier characterization of the dimension of an ideal. This
requires three lemmas.

Lemma 6.15. A non-empty set M of ideals in K[x1, . . . , xn] has a maximal element.

Proof. If this were not the case, then there exists a strictly ascending chain

I0 ⊊ I1 ⊊ I2 ⊊ . . . with Ii ∈M.

Then I :=
⋃∞

i=1 Ii is an ideal, so by Hilbert’s basis theorem (Theorem 5.2) there exist
finitely many generators f1, . . . , fr ∈ K[x1, . . . , xn] of I. But this means that there exists
some i ∈ N>0, such that fj ∈ Ii for all j ∈ {1, . . . , r}, implying Ii+1 ⊂ I = (f1, . . . , fr) ⊂
Ii ⊂ Ii+1, which contradicts our assumption.
If one is familiar with the concept of Noetherian rings, this is immediate: In a Noetherian
ring, any strictly ascending chain of ideals must be finite.

Lemma 6.16. Let I ⊊ K[x1, . . . , xn] be a proper radical ideal. Then I is can be written
as the intersection of finitely many prime ideals.

Proof. Aiming for contradiction, assume that this is not the case. Then Lemma 6.15
yields an ideal I that is maximal with this property. In particular, I cannot be prime, so
there exist a, b ∈ K[x1, . . . , xn] \ I with a · b ∈ I. Consider

I1 :=
√
I + (a), I2 :=

√
I + (b).

Claim: I = I1 ∩ I2.
It is clear that I ⊂ I1 ∩ I2. For the other inclusion, let f ∈ I1 ∩ I2. This means that
there exists m ∈ N, such that fm ∈ I + (a) and fm ∈ I + (b). Therefore, f 2m ∈
(I + (a))(I + (b)) ⊂ I and because I is radical this implies f ∈ I and establishes the
claim.
Since I ⊂ I1 and I ⊂ I2, it follows from the maximality of I that both I1 and I2 are
finite intersections of prime ideals, so the same holds true for I, which contradicts our
assumption.

Lec 27
2022-02-03

Lemma 6.17. Let L = K(α1, . . . , αn) be a finite field extension. Then trdegK(L) is the
size of a maximal algebraically independent subset of {α1, . . . , αn}.

We can now state and prove the theorem that gives an easier characterization of the
dimension of an ideal.

Theorem 6.18. For an ideal I ⊂ K[x1, . . . , xn], we have

dim(I) = max{k ∈ N : ∃ i1 < · · · < ik, {xi1 , . . . , xik} algebraically independent mod I}.

6 Applications of Gröbner Bases 70

Proof. Because each xij is a polynomial, it is clear that the right side is less or equal to
the left one.
For the other inequality, let f1, . . . , fr ∈ K[x1, . . . , xn] be algebraically independent mod
I. We need to show that there exist i1, . . . , ir ∈ N, 1 ≤ i1 < · · · < ir ≤ n such
that {xi1 , . . . , xir} is algebraically independent mod I. If

√
I = K[x1, . . . , xn], then I =

K[x1, . . . , xn] and the claim is clear, so we may assume that
√
I ⊊ K[x1, . . . , xn]. By

Lemma 6.16, we may write

√
I = P1 ∩ . . . ∩ Ps with Pi ∈ Spec(K[x1, . . . , xn]).

Aiming for contradiction, assume that for every i ∈ {1, . . . , s}, {fj : j ∈ {1, . . . , r}} is
algebraically dependent mod Pi; that is, there exist polynomials Fi ∈ K[y1, . . . , yr] \ {0}
with Fi(f1, . . . , fr) ∈ Pi. This implies

s∏
i=1

Fi(f1, . . . , fr) ∈
s⋂

i=1

Pi =
√
I,

so there exists m ∈ N such that

G =
s∏

i=1

Fm
i ̸= 0

satisfies G(f1, . . . , fr) ∈ I, contradicting our assumption that the f1, . . . , fr are alge-
braically independent mod I.
Thus, there exists some i ∈ {1, . . . , s}, such that the f1, . . . , fr are algebraically indepen-
dent mod Pi, so their equivalence classes in L := Quot(K[x1, . . . , xn]/Pi) are algebraically
independent as well. Therefore, trdegK(L) ≥ r and since the xi generate L as a field
extension over K, Lemma 6.17 guarantees the existence of algebraically independent el-
ements xi1 , . . . , xir ∈ L. In particular, they are algebraically independent mod Pi and
thus mod I.

In particular, the dimension of any ideal I ⊂ K[x1, . . . , xn] is at most n.

Example 6.19. The ideal I = (xy, xz) ⊂ K[x, y, z] (which is a Gröbner basis) induces
the affine variety

V(I) =
{
(a, b, c) ∈ K3 : a = 0 or b = c = 0

}
.

Because the algebraically independent mod I subsets of {x, y, z} are ∅, {x}, {y}, {z}, {y, z},
it follows dim(I) = 2.

As a consequence, we get the following characterization of zero-dimensional proper
ideals I ⊊ K[x1, . . . , xn]:

dim(I) = 0 ⇐⇒ Every singleton {xi} for i ∈ {1, . . . , n} is algebraic mod I.

⇐⇒ dimK(K[x1, . . . , xn]/I) <∞

Now we can sketch our first algorithm to compute the dimension of an ideal: For
any subset S ⊂ {x1 . . . , xn}, we compute a Gröbner basis G w.r.t. some S-elimination
ordering. By Theorem 6.3, S is algebraically independent if and only if every element
of G contains some variable that is not in S. Then the size of the largest such S is the
dimension of the given ideal.

6 Applications of Gröbner Bases 71

It is clear that this algorithm is highly inefficient because of the large amount of Gröbner
bases that have to be computed.
In order to find a superior algorithm, we take a detour to the Hilbert series.

We have a canonical K-algebra homomorphism

K[x1, . . . , xn]→ KK
n

= {f : Kn → K}, f 7→ (x 7→ f(x))

that assigns to each polynomial its polynomial function. For X ⊂ Kn an affine variety
and I = I(X), we may compose this map with the K-algebra homomorphism KK

n → KX

induced by the inclusion X ↪→ Kn and the resulting map has kernel equal to I, so writing
A = K[x1, . . . , xn]/I, we obtain an injective K-algebra homomorphism

ϕ : A→ KX = {f : X → K}, f 7→ (x 7→ f(x)).

By definition, the image im(ϕ) (called ring of regular functions) consists precisely of those
functions that can be written as a polynomial expression in x and A is isomorphic to that
subalgebra.
The main idea is to study the affine variety X by considering its regular functions or
equivalently the K-algebra A = K[x1, . . . , xn]/I(X).

We saw that if dim(X) ̸= 0, then dimK(A) =∞. To better quantify the “size” of A,
we consider a filtration (Ad)d∈N as follows.

Definition 6.20. Denote theK-subvector space of polynomials of degree≤ d byK[x1, . . . , xn]≤d,
where deg(f) := max{deg(t) : t ∈M(f)}.
Let I ⊂ K[x1, . . . , xn] be an ideal and A = K[x1, . . . , xn]/I. For every d ∈ N the canonical
projection π : K[x1, . . . , xn]↠ A induces a subspace

Ad := π(K[x1, . . . , xn]≤d) = {f + I : deg(f) ≤ d}.

The Hilbert function of I is defined to be

hI : N→ N, d 7→ dimK(Ad)

and the Hilbert series of I is the formal power series

HI(t) =
∞∑
d=0

hI(d)t
d ∈ ZJtK.

Example 6.21.

(a) For I = (x1, . . . , xn) ⊂ K[x1, . . . , xn], we have A = K[x1, . . . , xn]/I ∼= K, so hI(d) =
1 for all d ∈ N and HI(t) =

1
1−t

by the geometric series.

(b) For I = (x− y2), a basis of Ad (as a K-vector space) is given by the equivalence
classes of {

1, x, . . . , xd, y, xy, . . . , xd−1y
}
,

so hI(d) = 2d + 1 and HI(t) =
∑∞

d=0(2d + 1)td = 1+t
(1−t)2

, as it is straightforward to

confirm that
(∑∞

d=0(2d+ 1)td
)
· (1− t)2 = 1 + t.

6 Applications of Gröbner Bases 72

(c) For I = (0) ⊂ K[x1, . . . , xn] the zero ideal, we vary the number of variables n in
the polynomial ring and write Hn for H(0) and hn for h(0). Using (a), it follows
H0(t) =

1
1−t

. For n ≥ 1, we have an isomorphism of vector spaces

K[x1, . . . , xn]≤d
∼=
⊕
i+j=d

K[x1, . . . , xn−1]≤i · xjn,

which implies

hn(d) = dimK(K[x1, . . . , xn]≤d) =
d∑

i=0

dimK(K[x1, . . . , xn−1]≤i) =
d∑

i=0

hn−1(i).

so by definition of the Cauchy product and induction, we conclude

Hn(t) =
∞∑
d=0

hn(d)t
d =

(
∞∑
d=0

td

)
·

(
∞∑
d=0

hn−1(d)t
d

)
=

1

1− t
Hn−1(t) =

1

(1− t)n+1 .

But this formal power series can also be written as

Hn(t) =
∞∑
d=0

(
−n− 1

d

)
(−t)d =

∞∑
d=0

(
n+ d

d

)
td =

∞∑
d=0

(
n+ d

n

)
td,

thus we deduce hn(d) =
(
n+d
n

)
.

We now start to draw the connection to Gröbner bases.

Definition 6.22. A monomial ordering ≤ is called a total degree ordering if

deg(t) < deg(t′) =⇒ t < t′ for all t, t′ ∈M.

Intuitively, a total degree ordering is just a monomial ordering which compares by
degree “first” and only if they are equal resorts to other criteria. Examples include the
graded lexicographic ordering and its reversed version.

Our interest in total degree orderings is motivated by the following theorem.

Theorem 6.23. Let ≤ be a total degree ordering. Then for any ideal I ⊂ K[x1, . . . , xn],
its Hilbert function and series is equal to that of its leading ideal L(I):

hI(t) = hL(I)(t), HI(t) = HL(I)(t).

Proof. Write A = K[x1, . . . , xn]/I and let G be a Gröbner basis of I. By Theorem 5.16,
the normal form NFG induces an injective K-linear map

ϕ : A→ K[x1, . . . , xn], f + I 7→ NFG(f).

For d ∈ N, we consider its restriction

ϕd := ϕ|Ad
: Ad → K[x1, . . . , xn], f + I 7→ NFG(f)

and denote by Vd the K-subspace spanned by all monomials t ∈M ⊂ K[x1, . . . , xn], such
that deg(t) ≤ d and t /∈ L(I).

6 Applications of Gröbner Bases 73

Claim: Vd = im(ϕd).
Because all elements of Vd are already in normal form w.r.t. G, it directly follows that
Vd ⊂ im(ϕd). For the other inclusion, let f + I ∈ Ad. By definition of the normal form,
there exist hi ∈ K[x1, . . . , xn], gi ∈ G, such that

NFG(f) = f +
r∑

i=1

higi and LM(higi) ≤ LM(f).

Since ≤ is a total degree ordering, we must have deg(higi) ≤ deg(f) ≤ d. Therefore, we
have deg(NFG(f)) ≤ d and because none of the monomials of NFG(f) lie in L(G) = L(I),
this shows that NFG(f) ∈ Vd and establishes the claim.
The claim implies that hI(d) = dimK(Vd). But Vd only depends on the leading ideal, so
for any two ideals I, J ⊂ K[x1, . . . , xn] with L(I) = L(I), we have hI = hJ . Because
L(L(I)) = L(I), the assertion follows.

Therefore, if we work with a total degree ordering, then it suffices to be able to
compute the Hilbert function for monomial ideals. Lec 28

2022-02-08Our next goal is to derive an explicit formula for the Hilbert series.
To that end, we first derive an equivalent characterization of the Hilbert series using
some basic facts about graded modules M =

⊕∞
i=0Mi over a graded commutative ring

R =
⊕∞

i=0Ri, which we now recall.
For one, theMi turn out to be not only abelian groups but even R0-modules. A submod-
ule N ⊂M inherits the grading and thus becomes a graded R-module if and only if it is
homogeneous, which means that it can be generated by homogeneous elements. Equiva-
lently, the homogeneous parts of any element in the submodule also lie in the submodule.
Furthermore, if N is homogeneous, then the quotient module M/N has the following
graded R-module structure:

M/N =
∞⊕
i=0

Mi/Ni, Ni = N ∩Mi.

We now apply this to the graded K[x1, . . . , xn]-module K[x1, . . . , xn]:

K[x1, . . . , xn] =
∞⊕
i=0

K[x1, . . . , xn]i, K[x1, . . . , xn]i = {f ∈ K[x1, . . . , xn] : deg(f) = i}.

Then the homogeneous modules (i.e. ideals) are precisely the monomial ideals. Let I be
such an ideal and write I≤i :=

⊕i
j=0 Ij.

The canonical projection K[x1, . . . , xn] ↠ K[x1, . . . , xn]/I is not only a module homo-
morphism but also maps the i-th homogeneous component to the i-th homogeneous com-
ponents; that is, it is an isomorphism of graded K[x1, . . . , xn]-modules (and in particular
of K-vector spaces). Therefore, the restriction K[x1, . . . , xn]≤d ↠ (K[x1, . . . , xn]/I)≤d is
well-defined and surjective, so we obtain a K-linear isomorphism

K[x1, . . . , xn]≤d/I≤d
∼= (K[x1, . . . , xn]/I)≤d.

This gives another characterization of the Hilbert function hI(d) = dimK((K[x1, . . . , xn]/I)≤d),
which we capture in a lemma.

6 Applications of Gröbner Bases 74

Lemma 6.24. For a monomial ideal I ⊂ K[x1, . . . , xn], we have

hI(d) = h(0)(d)− dimK(I≤d)

and

HI(t) = H(0)(t)−
∞∑
d=0

dimK(I≤d)t
d.

Applying this to the case that I = (m) is generated by a single monomial m ∈
K[x1, . . . , xn] and using that for d ≥ deg(m), multiplication by m provides a K-linear
isomorphism K[x1, . . . , xn]≤d−deg(m)

∼= I≤d, we obtain

H(m)(t) = H(0)(t)− tdeg(m)H(0)(t) = H(0)(t) · (1− tdeg(m)). (∗)

Let I = (m1, . . . ,ml) ⊂ K[x1, . . . , xn] be an ideal generated by monomials mi and
consider J := (m1, . . . ,ml−1). The projection

J → I/(ml), g 7→ g + (ml),

constitutes a surjective K[x1, . . . , xn]-module homomorphism with kernel (ml) ∩ J , so

J/((ml) ∩ J) ∼= I/(ml)

asK[x1, . . . , xn]-modules (and in particular asK-vector spaces). Because it is also graded,
we obtain a K-linear isomorphism

(J≤i)/((ml) ∩ J)≤i
∼= I≤i/(ml)≤i,

which with Lemma 6.24 translates to

HJ(t) +H(ml)(t) = HI(t) +H(ml)∩J(t). (∗∗)

With this observation, we can prove an explicit formula for the Hilbert series.

Theorem 6.25. Let I = (m1, . . . ,ml) ⊂ K[x1, . . . , xn] be an ideal generated by mono-
mials mi. Then the Hilbert series of I is

HI(t) =
1

(1− t)n+1

∑
S⊂{1,...,l}

(−1)|S|tdeg(lcm{mi:i∈S}).

Proof. We prove this by induction on l. For l = 0, we have I = (0) and H(0)(t) =
1

(1−t)n+1

by Example 6.21. The case l = 1 follows directly from (∗).
For l > 1, we use (∗∗), (∗), the inductive hypothesis and the fact that

(ml) ∩ (m1, . . . ,ml−1) = (lcm(m1,ml), . . . , lcm(ml−1,ml))

to conclude

(1− t)n+1 ·HI(t) =
∑

S⊂{1,...,l−1}

(−1)|S|tdeg(lcm{mi:i∈S}) +
(
1− tdeg(ml)

)
−

∑
S⊂{1,...,l−1}

(−1)|S|tdeg(lcm{lcm(mi,ml):i∈S})

6 Applications of Gröbner Bases 75

Now the assertion follows from the observation

lcm{lcm(mi,ml) : i ∈ S} =

{
lcm{mi : i ∈ S ∪ {l}} S ̸= ∅
1 S = ∅

and the decomposition

{A : A ⊂ {1, . . . , l}} = {A : A ⊂ {1, . . . , l − 1}}
∐
{A ∪ {l} : A ⊂ {1, . . . , l − 1}}.

Corollary 6.26 (Hilbert-Sierre theorem).
The Hilbert function of any ideal I ⊂ K[x1, . . . , xn] is a rational function of the form

HI(t) =
a0 + a1t+ · · ·+ akt

k

(1− t)n+1 for ai ∈ Z.

Furthermore, the Hilbert polynomial, defined to be

pI(d) :=
k∑

i=0

ai

(
d− i+ n

n

)
∈ Q[d],

coincides with the Hilbert function hI(d) for all d ≥ k.

Proof. The first claim is an immediate consequence of Theorem 6.23 and Theorem 6.25.
Using Example 6.21, we see that for i ∈ {0, . . . , k}, we have

ait
i

(1− t)n+1 = ait
i

∞∑
d=0

(
n+ d

n

)
td =

∞∑
d=i

ai

(
n+ d− i

n

)
td.

For d ≥ i, the coefficient of td of this summand precisely corresponds to one of the
summands in the definition of pI(d), so for d ≥ k, we conclude pI(d) = hI(d).

We previously saw that for an ideal I ⊂ K[x1, . . . , xn]:

dim(I) = 0 ⇐⇒ 0 ̸= dimK(K[x1, . . . , xn]/I) <∞.

But this is equivalent to the Hilbert function hI(d) becoming a nonzero constant for large
enough d ∈ N, which by the previous theorem is equivalent to deg(pI) = 0. Therefore, in
the case that dim(I) = 0, we have dim(I) = deg(pI).
Our next goal is to generalize this result and show that it is true for any ideal that
its dimension is precisely the degree of its Hilbert polynomial. In order to see this, we
consider the case of finitely generated K-algebras.

By the homomorphism theorem, any finitely generated K-algebra A is isomorphic
to K[x1, . . . , xn]/I for some n ∈ N and ideal I ⊂ K[x1, . . . , xn]. Indeed, a K-algebra
epimorphism ϕ : K[x1, . . . , xn] ↠ A precisely corresponds to a choice of generators A =
K[a1, . . . , an]: Given ϕ, we have A = K[ϕ(x1), . . . , ϕ(xn)] and on the other hand, genera-
tors a1, . . . , an induce the epimorphism K[x1, . . . , xn]↠ A, xi 7→ ai.
Because there are many possible choices of generators (even the number of generators
can vary), it is not clear how to generalize the Hilbert function to finitely generated K-
algebras.
However, it turns out that the degree of the Hilbert polynomial does not depend on the
chosen isomorphism.

6 Applications of Gröbner Bases 76

Lemma 6.27. Let I ⊂ K[x1, . . . , xn], J ⊂ K[y1, . . . , ym] be ideals, such that we have a
K-algebra isomorphism

K[x1, . . . , xn]/I ∼= K[y1, . . . , ym]/J.

Then the degrees of the corresponding Hilbert polynomials agree: deg(pI) = deg(pJ).

Proof. Writing A := K[x1, . . . , xn]/I and B = K[y1, . . . , ym]/J , let ϕ denote the isomor-
phism A ∼= B. Then there exist g1, . . . , gm ∈ K[x1, . . . , xn], such that ϕ(gi + I) = yi + J .
With l := max{deg(gi) : i ∈ {1, . . . ,m}}, we have

B≤d ⊂ ϕ(A≤dl) =⇒ hJ(d) ≤ hI(dl) =⇒ deg(pJ) ≤ deg(pI).

and the other inequality follows by symmetry.
Lec 29
2022-02-10

Theorem 6.28 (Noether normalization). Let A be a non-zero, finitely generated K-
algebra. Then there are c1, . . . , cd ∈ A algebraically independent, such that A is finitely
generated as a module over C := K[c1, . . . , cd] (d = 0 means C = K); i.e. A =

∑m
i=1Cai

for some ai ∈ A.
Furthermore, for A = K[x1, . . . , xn]/I, we have d = dim(I).

Proof. LetA = K[x1, . . . , xn]/I for some proper ideal I ⊊ K[x1, . . . , xn]. We use induction
on n. The case I = (0) is straightforward, as we can just choose ci = xi and d = n. This
includes the base case n = 0. For n > 0 and I ̸= (0), let f =

∑
t∈M(f) att ∈ I \ {0},

at ∈ K and set m := deg(f) + 1. Then the map

S : M(f)→ N, xe11 · · · xenn 7→
n∑

i=1

ei ·mi−1

(which essentially corresponds to a representation of the monomials of f w.r.t. the basis
m) is injective. For i ∈ {2, . . . , n}, we set yi := xi − xm

i−1

1 and calculate

f = f(x1, . . . , xn)

= f
(
x1, y2 + xm1 , . . . , yn + xm

n−1

1

)
=

∑
t=x

e1
1 ···xen

n ∈M(f)

atx
e1
1

n∏
i=2

(
yi + xm

i−1

1

)ei
=
∑

t∈M(f)

at

(
x
S(t)
1 + gt(x1, y2, . . . , yn)

)
,

where at ∈ K and gt ∈ K[x1, . . . , xn] satisfies degx1
(gt) < S(t). Because S is injective,

there exists exactly one monomial t ∈ M(f), such that k := S(t) is maximal, so f is of
the form

f = atx
k
1 + h(x1, y2, . . . , yn)

for some h ∈ K[x1, . . . , xn] with degx1
(h) < k. Since f ∈ I, it follows

xk1 + at
−1h(x1, y2, . . . , yn) ∈ I (∗)

6 Applications of Gröbner Bases 77

and B := K[y2 + I, . . . , yn + I] ⊂ A satisfies

A =
k−1∑
i=0

B(x1 + I)i.

By the inductive hypothesis, there exist algebraically independent elements c1, . . . , cd ⊂ B
and such that B =

∑l
j=1K[c1, . . . , cd]bj for some b1, . . . , bl ∈ B. Therefore, the first part

of the claim follows:

A =
k−1∑
i=0

l∑
j=1

K[c1, . . . , cd]bj(x1 + I)i.

It is left to show that d = dim(I). By the inductive hypothesis, we have d = trdegK(B)
and because B ⊂ A, it follows d ≤ trdegK(A). For the other inequality, let f1, . . . , fr ∈
K[x1, . . . , xn] be algebraically independent mod I. Because dim(I) = dim(

√
I), we may

assume that I is a radical ideal. By the same argument as in the proof of Theorem 6.18,
there exists a prime ideal P ⊂ K[x1, . . . , xn] containing I, such that f1, . . . , fr are alge-
braically independent mod P . Therefore, the field L := Quot(K[x1, . . . , xn]/P) satisfies
trdegK(L) ≥ r and by (∗), L is algebraic over

L′ := Quot(K[y2 + P, . . . , yn + P]) ⊂ L,

so trdegK(L
′) ≥ r. The canonical projections K[y2, . . . , yn]↠ B and the inclusion I ⊂ P

induce K-algebra homomorphisms

B ∼= K[y2, . . . , yn]/(K[y2, . . . , yn] ∩ I)↠ K[y2, . . . , yn]/(K[y2, . . . , yn] ∩ P).

and similarly, we have K[y2, . . . , yn]/(K[y1, . . . , yn] ∩ P) ∼= K[y2 + P . . . , yn + P]. We
conclude

d = trdegK(B) ≥ trdegK(K[y2 + P, . . . , yn + P]) = trdegK(L
′) ≥ r,

and thus trdegK(A) ≤ d.

Noether normalization can be interpreted geometrically. Indeed, let X ⊂ Kn be an
affine variety and A = K[x1, . . . , xn]/I(X) the ring of regular functions on X. Then
choosing c1, . . . , cd ∈ A corresponds to choosing a morphism of varities

f : X → Kd, v 7→ (c1(v), . . . , cd(v)).

It can be shown that if the ci are chosen according to the theorem, then f is surjective
and has finite fibers f−1({y}) for all y ∈ Kd.

Example 6.29. Consider the hyperbola X = V(xy − 1) ⊂ C2. Then projecting to the x
or y axis is not surjective, as 0 is not in the image. One can show that c = x− y (which
corresponds to projecting onto the “diagonal”) constitutes a Noether normalization.

Theorem 6.30. For any ideal I ⊂ K[x1, . . . , xn], we have dim(I) = deg(pI).

Proof. The case I = K[x1, . . . , xn] is covered in Example 6.21. Thus we assume I ⊊
K[x1, . . . , xn] and set A := K[x1, . . . , xn]/I. By Noether normalization (Theorem 6.28),
there exist algebraically independent elements c1, . . . , cm, such thatA =

∑l
i=1K[c1, . . . , cm]bi

6 Applications of Gröbner Bases 78

with m = dim(I) for some b1, . . . , bl ∈ A. We may assume that b1 = 1 by “shifting” the
bi and setting b1 = 1. The K-algebra homomorphism

ϕ : K[y1, . . . , yd, z1, . . . , zl]→ A, yi 7→ ci, zi 7→ bi

is surjective, so with J = ker(ϕ) and B := K[y1, . . . , ym, z1, . . . , zl]/J , we have A ∼= B.
By Lemma 6.27, it suffices to show that deg(pJ) = m. For d ∈ N, we write

B≤d = {f + J : f ∈ K[y1, . . . , ym, z1, . . . , zl], deg(f) ≤ d}

and
C≤d = {f + J : f ∈ K[y1, . . . , ym], deg(f) ≤ d}.

Using C≤d ⊂ B≤d for all d ∈ N, the algebraic independence of the ci and Example 6.21,
it follows

hJ(d) = dim(B≤d) ≥ dim(C≤d) = dim(K[y1, . . . , ym]) =

(
m+ d

m

)
.

This shows that deg(pJ) ≥ m.
For the other inequality, we first observe that for 1 ≤ i ≤ j ≤ l, we can write

bi · bj =
l∑

k=1

ai,j,kbk for some ai,j,k ∈ K[c1, . . . , cm].

With e := maxi,j,k ai,j,k, this implies bi · bj ∈
∑l

k=1C≤ebk. Iterating this, it follows that

the product of s (s ∈ N>0) of the bi lies in
∑l

k=1C≤(s−1)ebk. Therefore, for all d ≥ 0, we
have

B≤d ⊂ C≤d · b1 +
d∑

s=1

l∑
k=1

C≤d−sC(s−1)ebk ⊂
l∑

k=1

C≤debk =: Vd.

Thus the assertion follows with the algebraic independence of the ci and Example 6.21:

hJ(d) = dim(B≤d) ≤ dim(Vd) ≤ l · dim(C≤de) = dim(K[y1, . . . , ym]) = l ·
(
m+ de

m

)
.

Corollary 6.31. For any ideal I ⊂ K[x1, . . . , xn] and total degree ordering ≤, we have

dim(I) = dim(L(I)).

Proof. This is a direct consequence of Theorem 6.23, Corollary 6.26 and Theorem 6.30.

In fact, it can be shown that the previous corollary holds true for any monomial
ordering.

Our interest in the Hilbert function and series was mainly motivated by this result.
Now that we have established it, we can determine the dimension of an ideal in a more
efficient way and without computing the Hilbert function or series:

Let I ⊂ K[x1, . . . , xn] be an ideal with leading ideal L(I) = (m1, . . . ,mk).
By Theorem 6.18 and Corollary 6.31, we have dim(I) = n − |S| for any subset S ⊂

6 Applications of Gröbner Bases 79

{x1, . . . , xn} of minimal size such that {x1, . . . , xn} \ S is algebraically independent mod
(m1, . . . ,mk). This is equivalent to the elimination ideal (m1, . . . ,mk)∩K[{x1, . . . , xn} \ S]
being zero, which means that its reduced Gröbner basis is empty. Using Theorem 6.3
and the fact that (m1, . . . ,mk) is a Gröbner basis of L(I) w.r.t. any monomial ordering,
the above is equivalent to {m1, . . . ,mk} ∩K[{x1, . . . , xn} \ S] = ∅.
This observation gives rise to our final algorithm, which only requires computing a single
Gröbner basis.

Algorithm 6.32.

Input: I ⊂ K[x1, . . . , xn] ideal.

Output: Krull dimension dim(I)

(1) Compute a Gröbner basis G of I. Let m1, . . . ,ml be the leading monomials of
the elements of G.

(2) If one of the mi is constant: return −1.

(3) Find a minimal subset S ⊂ {x1, . . . , xn} such that every mi contains some
variable of S.

(4) Return n− |S|.

	Integer Arithmetic
	Addition of Integers
	Multiplication of Integers
	Grid Multiplication
	Karatsuba-Multiplication
	Discrete Fourier Transform

	Division with Remainder and Greatest Common Divisors
	Primality Testing
	The Fermat Test
	The Miller-Rabin Test
	The AKS-test

	Cryptography
	RSA Encryption
	Diffie-Hellman Key Exchange

	Factorization
	Pollard's rho Method
	Pollard's p-1 Algorithm
	The Quadratic Sieve

	A Computational View towards Linear Algebra
	Complexity of Operations from Linear Algebra
	Strassen Multiplication
	Common Operations as Matrix Multiplication

	Algebraic Systems of Equations and Gröbner Bases
	Affine Varieties
	The Univariable Polynomial Ring
	Resultant method
	Hilbert's Nullstellensatz
	Monomial Orderings
	Gröbner Bases
	Buchberger's Algorithm

	Applications of Gröbner Bases
	Elimination Ideals
	Dimensions

