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1 Basics of Social Choice Theory
Lec 1
2021-10-191.1 Motivation

Social choice theory tries to aggregate possibly conflicting preferences into collective
choices in a “good” way. Such a mechanism is important in practice. Indeed, its main
application is to identify voting systems that yield “reasonable” results for an election,
but it can also be used to find suitable coalitions or determine a “fair” allocation of
resources.

1.2 Rational Choices
Lec 2
2021-10-26We start by formalizing what it means to make rational choices.

Definition 1.1. Let U be a finite set with m ∈ N elements (alternatives). We call the
set F (U) := P(U) \ {∅} the set of feasible sets. A choice function is a function
S : F (U) → F (U) with F (A) ⊂ A for A ∈ F (U).

We always implicitly assume that our set U of alternatives is finite.
We can think of the input of the function as the available alternatives. By allowing

this function to return a set of alternatives, we allow for indifference between certain
alternatives.
Also note that a choice function only needs to be specified on sets with at least two
elements.

A rational decision maker should have preferences over all alternatives (in the whole
universe) that are independent from their feasibility.

Definition 1.2. A preference relation is a complete binary relation on the set of
alternatives U .

Any binary relation R ⊂ U × U admits a disjoint decomposition into two parts:

• asymmetric part P : (a, b) ∈ P ⊂ U × U if and only if (a, b) ∈ R and (b, a) ̸∈ R.

• symmetric part I: (a, b) ∈ I ⊂ U × U if and only if (a, b) ∈ R and (b, a) ∈ R.

We usually write ≥ for R, > for P and ∼ for I. We may think of a preference relation
as a table in which each line may contain multiple alternatives and the top alternatives
are the ones most liked.

Definition 1.3. Let R be a binary relation on U and A ∈ F (U). The set of maximal
elements of A w.r.t. the strict part of R is called maximal set Max(R,A).

If R is a complete relation (e.g. a preference relation), this is equivalent to the set of
greatest elements of A.

Example 1.4. The complete relation a > b > c > a on three alternatives U = {a, b, c}
has an empty maximal set. This corresponds to the cyclic graph with three vertices.

Definition 1.5. A binary relation ≥ on U is called

(a) transitive, if for all x, y, z ∈ U , x ≥ y and y ≥ z implies x ≥ z.
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(b) quasi-transitive, if its asymmetric part is transitive; i.e. for all x, y, z ∈ U , x > y
and y > z implies x > z.

(c) acyclic, if for all x1, . . . , xn ∈ U , x1 > x2, . . . , xn−1 > xn implies x1 ≥ xn.

Any (finite) binary relation R on a set U can be represented by a directed graph,
where the vertices are the elements of U and an edge u→ v exists if and only if u ≥ v.
If R is complete or asymmetric, then the subgraph given by u → v if and only if u > v
already completely determines R.
Also note that the asymmetric part of an antisymmetric relation R is just the same
relation R but with the diagonal {(x, x) : x ∈ R} removed.

Proposition 1.6. For any binary relation ≥ on a (finite) set U , it holds

≥ transitive =⇒ ≥ quasi-transitive =⇒ ≥ acyclic.

If ≥ is asymmetric, these are equivalences.

Proof. The first part is straightforward to show, the second follows directly from the
previous observation.

Lemma 1.7. Let R be a preference relation on U .
Then Max(R,A) ̸= ∅ for all A ∈ F (U) if and only if R is acyclic.
In particular, R induces a choice function

Max(R,−) : F (U) → F (U)

if and only if it is acyclic.

Proof. If x1 > x2 > · · · > xn, then Max(R, {x1, . . . , xn}) = {x1}.
For the other direction, let A ∈ F (U) and pick an arbitrary element a1 ∈ A. For i ∈
{1, . . . , |A|}, if ai ∈ Max(R,A), then Max(R,A) ̸= ∅ and we are done. Otherwise, there
exists ai+1 ∈ A with ai+1 > ai and because R is acyclic, we have ai+1 ∈ A \ {a1, . . . , ai}.
Since A is finite, iterating this must eventually terminate.

Definition 1.8. A choice function S : F (U) → F (U) is called rationalizable, if there
exists a binary relation R on U , such that S = Max(R,−).
The base relation of S is the relation RS ⊂ U × U given by

(x, y) ∈ RS :⇐⇒ x ∈ S({x, y}).

Lemma 1.9. A choice function S : F (U) → F (U) is rationalizable if and only if it is
rationalized by its base relation; i.e. S = Max(RS,−).

Proof. Let S be rationalizable by R. Then R = RS, since

(x, y) ∈ R ⇐⇒ x ∈ S({x, y}) ⇐⇒ (x, y) ∈ RS.

By Lemma 1.7 and Lemma 1.9, the base relation of a rationalizable preference relation
is acyclic.
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Example 1.10. A choice function S : F ({a, b, c}) → F ({a, b, c}) with S({a, b, c}) = {a}
and S({a, b}) = {b} cannot be rationalized. This follows from the previous lemma.

Our next goal is to find consistency criteria which are necessarily satisfied by ratio-
nalizable choice functions.

Definition 1.11. A choice function S : F (U) → F (U) satisfies contraction (short: α)
if for all A,B ∈ F (U), B ⊂ A implies S(A) ∩B ⊂ S(B).

In words, a choice function satisfies contraction, if any alternative u ∈ U that is chosen
in some set A is also chosen for any subset B ⊂ A with u ∈ B.

Lemma 1.12. If a choice function S : F (U) → F (U) satisfies α, then its base relation
RS is acyclic.

Proof. Let x1 > x2 > · · · > xn and A := {x1, . . . , xn}. If x1 ̸∈ S(A), then there must
exist some i ∈ {2, . . . , n}, such that xi ∈ S(A). But because S satisfies α, this implies
xi ≥ xi−1, which contradicts our assumption and thus shows x1 ∈ S(A). Applying the α
property to {x1, xn}, we conclude x1 ≥ xn.

Definition 1.13. A choice function S : F (U) → F (U) satisfies expansion (short γ) if
for all A,B ∈ F (U), we have S(A) ∩ S(B) ⊂ S(A ∪B).

A. K. Sen showed the following central result in 1971.

Theorem 1.14. A choice function S : F (U) → F (U) is rationalizable if and only if it
satisfies α and γ.

Proof. If S is rationalizable, then S = Max(R,−) and Max(R,−) : F (U) → F (U)
obviously satisfies α and γ for any binary relation R.
On the other hand, assume that S satisfies α and γ and let A ∈ F (U). We need to show
that Max(RS, A) = S(A).
If x ∈ Max(RS, A), then (x, a) ∈ RS for all a ∈ A; i.e. x ∈ S({x, a}) for all a ∈ A.
Iterating the γ property, this implies x ∈ S(A).
Similarly, x ∈ S(A) satisfies x ∈ S({x, a}) for any a ∈ A by the α property, so x ∈
Max(RS, A).

We give an equivalent characterization of α and γ and thus of rationalizability.

• Contraction (α): ∀A,B ∈ F (U) : S(A ∪B) ∩ A ∩B ⊂ S(A) ∩ S(B).

• Expansion (γ): ∀A,B ∈ F (U) : S(A ∪B) ∩ A ∩B ⊃ S(A) ∩ S(B).

• Rationalizability: ∀A,B ∈ F (U) : S(A ∪B) ∩ A ∩B = S(A) ∩ S(B).

Definition 1.15. A choice function S satisfies strong expansion (short: β+) if for all
A,B ∈ F (U), B ⊂ A and S(A) ∩B ̸= ∅, we have S(B) ⊂ S(A).

Intuitively, a choice function satisfies β+ if whenever an element x ∈ A is chosen in
S(A), then it is also chosen in all supersets whose winners contain some element of A.

Lemma 1.16. Any choice function that satisfies β+ also satisfies γ.

K. Arrow showed in 1959:

Theorem 1.17. A choice function S : F (U) → F (U) is rationalizable by a transitive
relation if and only if it satisfies α and β+.
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1.3 Social Choice Functions
Lec 3
2021-11-09Throughout this section, let N := {1, . . . , n} denote the finite set of “voters” with n ≥ 2

and let R(U) be the set of all transitive and complete relations over the set of alternatives
U .

Definition 1.18. The elements of R(U)n are called preference profiles.
A social choice function (SCF) is a function

ϕ : R(U)n → {choice function S : F (U) → F (U)},

which assigns to every preference profile R and every collection of alternatives A a set of
chosen alternatives (“winners”) ϕ(R,A) ⊂ A.

Notions like rationalizability and consistency carry over from the previous section by
saying that a social choice function satisfies such a property if all the choice functions in
its image satisfy it.

Definition 1.19. A SCF ϕ is called anonymous, if it is invariant under permutations
π : N → N ; i.e. if Ri = R′

π(i) for all i ∈ N implies that ϕ(R) = ϕ(R′).

Intuitively, an anonymous SCF is one where all voters are equal.

Definition 1.20. A SCF ϕ is called neutral, if for any A,B ∈ F (U), R ∈ R(U)n

and bijection π : A → B, we have π(ϕ(R,A)) = ϕ(R′, B) for all R′ ∈ R(U)n such that
π(R′|A) = R|A. Here π(R′|A) denotes the relation R′′ on A for which x >R′′ y if and only
if π(x) >R′ π(y) for x, y ∈ A.

This definition is quite strong, it not only corresponds to the intuitive notion of a
SCF being invariant under renaming the alternatives (for example, the SCF “A is always
the unique winner” is not neutral) but it also implies independence of preferences over
alternatives that are not contained in the feasible set (take A = B and π = idA).

Definition 1.21. The finite product
∏n

i=1Ai of sets with relations (Ai, Ri) is equipped
with the ∧-order1 R:

(x, y) ∈ R :⇐⇒ ∀ i ∈ {1, . . . , n} : (x, y) ∈ Ri.

Definition 1.22. Let R be a preference profile and x, y ∈ U two alternatives. With the
construction above applied to the strict parts of the Ri, we get a strict preorder > on U .

(a) x Pareto-dominates y if x > y.

(b) y is Pareto-optimal, if it is a maximal element w.r.t. >. Otherwise, it is called
Pareto-dominated.

As > is a transitive relation on the finite set U , there always is at least one Pareto-
optimal alternative, which allows us to define a SCF based on Pareto-optimality.

Definition 1.23. The Pareto SCF pareto(R,A) returns all Pareto-optimal alternatives
in A.

1In the language of category theory, this is just the product in the category of sets with relations.
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It is anonymous and neutral.

Definition 1.24. A SCF ϕ satisfies Pareto-opimality, if ϕ(R,A) ⊂ pareto(R,A) for
all A ∈ F (U), R ∈ R(U)n.

A Pareto-optimal SCF only returns Pareto-optimal alternatives.

Definition 1.25. A SCF ϕ is called resolute, if |ϕ(R,A)| = 1 for all A ∈ F (U), R ∈
R(U)n.

One reason why resoluteness is not always desirable is that there do not always exist
anonymous and neutral resolute SCFs. In fact, Moulin showed in 1983:

Theorem 1.26. There is an anonymous, neutral, Pareto-optimal and resolute SCF for
strict preferences with n voters on m alternatives if and only if no q ∈ N with 2 ≤ q ≤ m
divides n.

Definition 1.27. Given a set A equipped with a relation R ⊂ A×A, its power set P(A)
can be equipped with the power set relation2 P(R)

(X, Y ) ∈ P(R) :⇐⇒ X = {x} ∧ Y = {y} ∧ (x, y) ∈ R.

It is clear that there are other ways to extend a relation to its power set.

Definition 1.28. A SCF ϕ is called manipulable by voter i ∈ N , if there exists A ∈
F (U) and two preference profiles R,R′ ∈ R(U)n whose j-th components agree for all
j ̸= i, such that i strictly prefers ϕ(R′, A) to ϕ(R,A) w.r.t. the power set relation P(Pi).
A SCF is called strategyproof, if it is not manipulable by any voter.

Intuitively, this means that a manipulable SCF allows some voter to misrepresent
their preferences in order to obtain a preferred outcome. This assumes that the voter
precisely knows how the other voters will vote.

Definition 1.29. A SCF ϕ is called monotonic, if for any voter i ∈ N , alternative
a ∈ U and A ∈ F (U) the following is true: For two preference profiles R,R′ that agree
on all but the i-th component and such that

∀ x, y ∈ U \ {a} : (x, y) ∈ Ri ⇐⇒ (x, y) ∈ R′
i,

(a, y) ∈ Ri =⇒ (a, y) ∈ R′
i,

(a, y) ∈ Pi =⇒ (a, y) ∈ P ′
i ,

we have a ∈ ϕ(R′, A) whenever a ∈ ϕ(R,A). It is called positive responsive if the
additional assumption Ri|A ̸= R′

i|A implies {a} = ϕ(R′, A) whenever a ∈ ϕ(R,A).

The idea behind the monotonicity property is as follows: If a voter increases their
opinion of an alternative that was already a winner before, then this alternative should
still be a winner. If the SCF is even positive responsive, then this process should even
distinguish the alternative as the unique winner.

Intuitivley, a monotonic SCF on two alternatives {a, b} roughly distinguishes three
cases: For few votes for a, b usually wins (the “usually” refers to rules like “b always
wins”). Increasing the number of votes for a, we may get into the “indifference” case,
where both alternatives win. Finally, if we further increase the number of votes for a, we
may enter the third case in which a becomes the unique winner.

2In the language of category theory, we obtain an endofunctor on the category of sets with relations.
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Definition 1.30. A SCF ϕ satisfies independence of infeasible alternatives (IIA),
if for all A ∈ F (U), and R,R′ ∈ R(U)n which agree on A, we have ϕ(R,A) = ϕ(R′, A).

Note that neutrality implies IIA and that any SCF on two alternatives trivially satisfies
IIA.

By definition of a SCF ϕ, we get a map ϕ : F (U) → (R(U)n → F (U)). Note that

R ∼ R′ :⇐⇒ ∀ i : Ri|A = R′
i|A

defines an equivalence relation on R(U)n and that the projection

R(U)n → R(A)n, R = (Ri) 7→ (Ri|A)

induces an isomorphism (of sets) R(U)n/ ∼∼= R(A)n.
Then ϕ satisfies IIA if and only if ϕ(A) : R(U)n → F (U) decends to a map ϕ(A) : R(A)n ∼=
R(U)n/ ∼→ F (U) for all A ∈ F (U). Roughly, this means that when e.g. applied to
A = {a, b} and a preference profile R like

n m
a b
b,c c
d a

d

ϕ actually takes

n m
a b
b a

as input.

Suppose that for each nonempty subset V ⊂ U , we have a map ϕV : R(V )n → R(V ).
Then we may construct a SCF ϕ(A) for A ∈ F (U) as the composition

R(U)n R(A)n F (A) F (U),π ϕV ι

which by construction satisfies IIA.

Example 1.31. The Borda rule is a SCF that for R ∈ R(U)n and A ∈ F (U) calculates
the “score” of an alternative a ∈ U by assigning no points for every time a voter listed
the alternative at the last place, 1 point for every second last place and so on. Restricting
to A, it returns those alternatives that have maximal score.

For example, the Borda rule when applied to U = {a, b, c}, A = {a, c} and the
preference profile

1 2
a b
b c
c a
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returns {a, c}. This example also shows that the Borda rule does not satisfy IIA, because
by moving b up in the left column, the score of a decreases, so c becomes the unique
winner.
Since we can define the Borda rule for every subset V ⊂ U , we can apply the above
construction to obtain a SCF ϕ, which when applied to A = {a, c} simply restricts to the
subtable

1 2
a c
c a

before counting points. Here we also see that ϕ is not rationalizable, because ϕ(A) =
{a, c}, but c > a in the base relation.
The same construction can be applied to majority rule.

Theorem 1.32. A resolute SCF on two alternatives is strategyproof if and only if it is
monotonic. Furthermore, any (not necessarily resolute) SCF on two alternatives that is
monotonic is also strategyproof.

May showed the following important theorem in 1952.

Theorem 1.33 (May’s Theorem). Majority rule is the only SCF on two alternatives
that is anonymous, neutral and positive responsive.

Intuitively, it is comprehensible that majority rule is the most decisive (the fewest
amount of ties) SCF out of all anonymous, neutral and monotonic SCFs. For example,
the Pareto SCF satisfies those three properties, but is not positive responsive.
The theorem shows that for two alternatives, majority rule is the “best” voting rule.
In particular, many other voting rules agree with majority rule for the case of only two
alternatives.
Also note that any SCF on two alternatives is trivially rationalizable.

Corollary 1.34. Let ϕ be an anonymous, neutral and positive responsive SCF. Then
for any subset A with two elements, ϕ(−, A) =M(−, A), where M denotes the majority
rule SCF.

Proof. Since ϕ is neutral, it also satisfies IIA, so it descends to a function ϕ(A) : R(A)n →
F (U), which induces a SCF on A ⊂ U

ϕA : R(A)
n → {choice function S : F (A) → F (A)}.

This SCF takes R ∈ R(A)n and B ∈ F (A) ⊂ F (U), extends R to a complete relation R′

on U in such a way that R′|A = R and then returns the result of ϕ(R′, B). It is anonymous,
neutral and positive responsive as the same holds for ϕ. May’s Theorem (Theorem 1.33)
implies that ϕA is just majority rule, so for B = A, we conclude ϕ(R′, A) = ϕA(R,A) =
M(R,A) =M(R′, A) for any R′ ∈ R(U)n with restriction R ∈ R(A)n.

Theorem 1.35. No anonymous, neutral and positive responsive SCF is rationalizable,
whenever there are at least three alternatives and voters.

Proof. It is enough to prove this for three alternatives U = {a, b, c} and three voters
because we may add additional completely indifferent voters and bottom-ranked alterna-
tives (using that the SCF is assumed to be neutral, thus satisfies IIA).
Let ϕ be a SCF that is anonymous, neutral and positive responsive. By Lemma 1.9, the
only relation that could potentially rationalize ϕ is its base relation and by Corollary
1.34, this base relation chooses by majority. However, the preference profile
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1 1 1
a b c
b c a
c a b

gives an acyclic base relation, showing that ϕ is not rationalizable.

Any preference profile R induces a relation C(R) on the set of alternatives U by
declaring a ≥ b if and only if at least as many voters prefer a to b than the other way
around. In other words, the relation chooses by majority and is thus called majority
relation.
The previous theorem states that the base relation of ϕ(R) for R ∈ R(U)n is the majority
relation.

Definition 1.36. An alternative x ∈ U is a Condorcet winner w.r.t. a preference
profile R, if it is a greatest element in U w.r.t. the strict part of C(R).

The previous theorem essentially boils down to the fact that Condorcet winners need
not exist. However, if they do, they are unique.

Definition 1.37. A SCF ϕ is dictatorial, if there exists a voter i ∈ N , such that for all
A ∈ F (U) and R ∈ R(U)n, we have ϕ(R,A) = {x} whenever voter i strictly prefers x to
all other alternatives in A.

Of course, anonymity implies non-dictatorship.
Arrow showed the following important result in 1951.

Theorem 1.38 (Arrow’s Impossibility Theorem). There exists no SCF that satisfies
IIA on two alternatives, Pareto-optimality on two alternatives, non-dictatorship on two
alternatives and transitive rationalizibility whenever there are at least three alternatives.

1.4 Social Welfare Functions
Lec 4
2021-11-16Definition 1.39. A social welfare function (SWF) is a function ψ : R(U)n → R(U).

Intuitively, a social welfare function aggregates individual preference relations into a
single, collective one.

For any SCF ϕ that is transitively rationalizable we may construct a canonical SWF,
namely the one that takes a preference profile and returns the corresponding base rela-
tion of ϕ. On the other hand, any SWF ψ induces the transitively rationalizable SCF
Max(ψ(−),−), which assigns Max(ψ(R), A) to R ∈ R(U)n and A ∈ F (U).
Therefore, SWFs correspond to transitively rationalizable SCFs.

This bijection is used to translate the various notions we defined from SCFs to SWFs.
Using those, we can restate Arrow’s Impossibility Theorem for SWFs.

Theorem 1.40 (Arrow’s Impossibility Theorem for SWFs). Every SWF that sat-
isfies IIA and Pareto-optimality is dictatorial for at least three alternatives.

In order to prove this theorem, we need to introduce some terminology.
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Definition 1.41. Let ψ be a SWF. A group of voters G ⊂ N is called decisive for
a ∈ U against b ∈ U , if a > b w.r.t. ψ(R) for all R ∈ R(U)n with a >i b for all i ∈ G.
It is called decisive, if it is decisive for all a, b ∈ U .
It is called semidecisive for a ∈ U against b ∈ U , if a > b w.r.t. ψ(R) for all R ∈ R(U)n

with a >i b for all i ∈ G and b >j a for all j /∈ G.

By definition, decisiveness implies semidecisiveness.

Example 1.42. If ψ is dictatorial with dictator i, then precisely the supersets of i are
decisive. W.r.t. majority rule, precisely those subsets are decisive, which have a size
greater than |N |2. If ψ is Pareto-optimal, then the set of all voters N is decisive.

Lemma 1.43 (Field Expansion Lemma). Let ψ be a SWF that satisfies IIA and
Pareto-optimality and suppose that there are at least three alternatives. If there exists
a group of voters G ⊂ N that is semidecisive for a ∈ U against b ∈ U (a ̸= b) then G is
decisive.

Lemma 1.44 (Group Contraction Lemma). Let G ⊂ N be a decisive group, parti-
tioned into two subsets G = G1

∐
G2. Then G1 or G2 is another decisive group.

The essence of Arrow’s Impossibility Theorem and many related results is that ra-
tionalizability is incompatible with collective choices whenever there are at least three
alternatives.

2 Domain Restrictions
Lec 5
2021-11-232.1 Social Choice Functions in Domain

Arrow’s Impossibility Theorem is a very significant negative result in Social Choice The-
ory, since despite the rather weak assumptions, it asserts the nonexistence of any such
SCF or SWF.
However, by imposing additional assumptions, one can obtain many positive results. Our
first approach is to restrict the set of possible preference relations of the voters.

Definition 2.1. A subset D(U) ⊂ R(U) is called a domain.
A SCF ϕ satisfies some property in domain D(U), if the restriction ϕ|D(U)n satisfies
this property.
These restrictions are functions of the form

ϕ : D(U)n → {choice function S : F (U) → F (U)},

with ϕ(D,A) ⊂ A for allD ∈ D(U) and A ∈ F (U) and are called social choice function
(SCF) in domain D(U).

Example 2.2. The domain of strict (or linear) preferences is

D(U) := {R ∈ R(U) : ∀x, y ∈ U : x > y ∨ y > x};

there must not be any ties in the preferences of a voter.

One can show Arrow’s Impossibility Theorem for the domain of strict preferences and
in fact that version is independent from the other version (being a dictator in domain
does not imply being a dictator in the non-restricted case).

The next property is similar to that of strategyproofness (Definition 1.28).
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Definition 2.3. Let n ∈ N. A collection of SCF{
ϕj : R(U)

j → {choice function S : F (U) → F (U)} : j ∈ {2, . . . , n}
}

can bemanipulated by strategic abstention, if there exists j ∈ {3, . . . , n}, R ∈ R(U)j

and A ∈ F (U), such that voter i strictly prefers ϕj−1(R−j, A) to ϕj(R,A) w.r.t. the power
set relation P(Pj). Here R−j ∈ R(U)j−1 denotes the preference profile R, but with the
j-th component removed.
Otherwise it satisfies participation.

For any preference profile R ∈ R(U)n (and any n ∈ N, n ≥ 2), there is the natural
relation RM induced by the majority SCF M , where

x ≥RM
y :⇐⇒ x ∈M(R, {x, y})) ⇐⇒ In a runoff, x scores at least as many points as y.

By Lemma 1.7, Max(RM ,−) constitutes a SCF in domain D if and only if RM is
acyclic in D.

Theorem 2.4. If RM is quasi-transitive in domain D, then Max(RM ,−) is a SCF in
domain D, which is strategyproof and satisfies participation in D.

Proof. This follows easily from the oberservation that by quasi-transitivity of RM , we
have

{a} = Max(RM , A) ⇐⇒ a is a Condorcet winner in A.

2.2 Dichotomous Preferences

Definition 2.5. The domain of dichotomous preferences DDI is

DDI := {R ∈ R(U) : ∀x, y, z ∈ U, x >R y : z ∼R x ∨ z ∼R y}.

For D ∈ DDI(U)
n, we say that a voter i likes a candidate x, if x is top-ranked in Di; i.e.

if x is a largest element in Di. Otherwise, x is a smallest element in Di and we say that
i dislikes x.

Intuitively, dichotomous preferences are precisely those where a voter may only agree
or disagree with an alternative and are not allowed to have more sophisticated opinions.

In the domain DDI , Max(RM ,−) is known as approval voting. Since

x ≥RM
y ⇐⇒ |{i ∈ N : i likes x}| ≥ |{i ∈ N : i likes y}|,

the winners of this SCF are exactly the alternatives with the highest number of likes.
Since ≥ is transitive on N, we immediately obtain the following result, first proven

by Inada in 1964.

Theorem 2.6. The majority relation RM is transitive in the domain of dichotomous
preferences DDI .

By Theorem 2.4, RM is strategyproof and satisfies participation in DDI .



2 Domain Restrictions 11

2.3 General Preference Restrictions

From now on, we only consider SCFs in the domain of total orders (without noting this
explicitly); i.e. we assume that the voters only have strict preferences.
Therefore, let R(U) denote the set of all anti-symmetric, transitive and complete relations.
Note that the asymmetric part P of a relation R ∈ R(U) is just P = R\{(x, x) : x ∈ R}.
In many cases, we will additionally assume that the number of voters is odd, since this
ensures that the majority relation RM is strict.

2.4 Single-Peaked Preferences

In many cases, the space of alternatives comes equipped with a total order. For exam-
ple, when the question is “How high should the tax rate be?”, the set of alternatives
{0%, 1%, . . . , 100%} has the usual total order ≥. Then a “rational” voter would be as-
sumed to have a favorite tax rate r (the peak when viewed as a graph) and to always
prefer tax rates that are close to r to those which are further away. This idea of rationality
is formalized by single-peaked preferences.

Definition 2.7. A preference profile R ∈ R(U) is called single-peaked with respect to
a total order ≥ over U , if for all i ∈ N and x, y, z ∈ U :

• If x > y > z and x >i y, then y >i z.

• If z > y > x and x >i y, then y >i z.

We denote the domain of single-peaked preferences by DSP .

Theorem 2.8. The majority relation RM is transitive in the domain of single-peaked
preferences DSP .

Proof. Assume that xPMy and yPMz. In order to show xRMz, we differentiate three
cases.
Case 1 : x > y > z (or z > y > x). Any voter that prefers x to y must also prefer y to z,
and by transitivity, this means that any such voter prefers x to z. It follows xPMz.
Case 2 : z > x > y (or y > x > z). Any voter that prefers z to x must also prefer to x
to y and by transitivity, this means that any such voter prefers z to y. Since yPMz, this
means that less than half of the voters prefer z to x, implying xPMz.
Case 3 : y > z > x (or x > z > y). Any voter that prefers y to z must also prefer z to x
and by transitivity, this means that any such voter prefers y to x. Therefore, more than
half the voters prefer y to x, contradicting xPMy, thus showing that this case cannot
occur.

Since we assume that the number of voters is odd, the previous theorem implies that
the SCF Max(RM ,−) is resolute in DSP and the unique winner is precisely the Condorcet
winner.

For voter i ∈ N , let ti be the most-prefered alternative (“peak”) of voter i; that is,
{ti} = Max(Ri, U). Let x, y ∈ U with x < y consecutive (i.e. there is no z ∈ U with
x < z < y). Then

xPMy ⇐⇒ |{i ∈ N : ti ≤ x}| > |{i ∈ N : ti ≥ y}|.
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By transitivity of PM , it follows

x is Condorcet winner. ⇐⇒ |{i ∈ N : ti ≤ x}| > n

2
∧ |{i ∈ N : ti ≥ x}| > n

2
.

In particular, there must be at least one voter whose top choice is the Condorcet winner.
We can visualize the alternatives on a line ordered by ≤. Then we may find the unique
Condorcet winner by determining a median voter ; i.e. a voter whose top choice has more
than half of the other top choices “left” to it (including the same choice) and the same
must hold for the “right”. So by sorting the voters according to their top choices, the
n+1
2
-th voter is a median voter and their top choice is the Condorcet winner.

In the domain DSP , Max(RM ,−) is known as median voting and it satisfies strate-
gyproofness and participation by Theorem 2.4.

It is possible in polynomial time to determine if for a given preference profile, there
exists some linear order ≥ on U , such that the preference profile is single-peaked with
respect to ≥.

2.5 Value Restriction

Definition 2.9. A domain D is value-restricted, if for each x, y, z ∈ U , there is some
alternative, say x, such that one of the following conditions is true:

• x is never the worst alternative (∀R ∈ D: x > y or x > z).

• x is never the best alternative (∀R ∈ D: y > x or z > x).

• x is never the middle alternative (∀R ∈ D: (x > y ∧ x > z) or (y > x ∧ z > x)).

Note that the first condition corresponds to U ′ := {x, y, z} being single-peaked with
linear order y > x > z or z > x > y.
In particular, a value-restricted domain can never contain a Condorcet cycle. The domain
of single-peaked preferences DSP is value restricted for the corresponding linear order.

Checking whether a domain is value-restricted can be done in polynomial time by
simply checking all triples x, y, z ∈ U .

Theorem 2.10. RM is transitive in domain D if and only if D is value-restricted.

Therefore, if a domain is value-restricted, Max(RM ,−) constitutes a SCF satisfying
all of Arrow’s axioms, strategyproofness and participation. Lec 6

2021-11-30

3 Ignoring Consistency

In this section, we try to resolve Arrow’s impossibility theorem (1.38) by ignoring con-
sistency. We do this by essentially fixing the set of alternatives and instead varying the
number of voters. Throughout this section, we do not assume that the number of voters
is odd.

Definition 3.1. For k ≤ |U |, a score vector of dimension k is just a vector s ∈ Rk.
For A ∈ F (U), any R ∈ R(U)|A corresponds precisely to a permutation on A, so the
action of R|A on s defines a function

R(U)× {A ∈ F (U) : |A| = k} → Rk,
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which by definition assigns the first-ranked candidate s1 points, the second-ranked can-
didate s2 points and so on. By summing the results, we obtain a function

ϕs : R(U)
n × {A ∈ F (U) : |A| = k} → Rk.

Furthermore, for any A ∈ F (U) with |A| = k, a vector Rk induces a complete and
transitive order on A, which in turn gives rise to the subset of maximizers in A w.r.t.
this order. A collection {si ∈ Ri : i ∈ {1, . . . , |U |}} of score vectors thus defines a SCF

R(U)n → {choice function S : F (U) → F (U)},

which is called scoring rule.

Since the scoring vectors belonging to different dimensions do not have to be related
in any way, scoring rules are generally not rationalizable. After all, the goal of this section
is to ignore consistency.

Example 3.2. (a) The (narrowed) Borda’s rule is the scoring rule induced by the
collection of score vectors si = (i− 1, . . . , 0).

(b) The plurality rule is the scoring rule induced by the collection of score vectors
si = (1, 0, . . . , 0).

(c) The veto rule (anti-plurality) is the scoring rule induced by the collection of score
vectors si = (1, . . . , 1, 0), which establishes precisely those alternatives that are
last-ranked the fewed number of times as the winners.

Note that scoring rules are invariant under positive affine transformations of the score
vectors.

Proposition 3.3. A scoring rule is monotonic if and only if every score vector s is
monotonically decreasing (i.e. si−1 ≥ si).

Definition 3.4. A monotonic scoring rule is called non-trivial, if not all components
are the same; i.e. if there exists k ≤ |U |, such that sk,1 > sk,k.

Definition 3.5. A SCF ϕ is a Condorcet extension, if ϕ(R,A) = {x}, whenever x is
the Condorcet winnner in A w.r.t. R.

Definition 3.6. For a given preference relation R ∈ R(U), we write

nx,y(R) := |{i ∈ N : x ≥i y}|.

Note that many SCFs actually do not depend on the whole preference relation R ∈
R(U)n, but only on the majority relation (C1 ). By our oddness assumption, the corre-
sponding directed graph is a tournament graph and each edge has the nonnegative weight
|nx,y| assigned to it. Then a SCF could also depend on the weighted graph, instead of
just the unweighted version (C2 ). This terminology is made precise in the following
definition.

Definition 3.7. A SCF ϕ is called

• C1, if it only depends on the majority relation; i.e. if it descends to a function

{M :M is majority relation induced by some R ∈ R(U)n} × F (U) → F (U).
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• C2, if it if it decends to a function

{(x, y, nx,y(R)) : x, y ∈ A,R ∈ R(U)n} × F (U) → F (U)

and is not C1. The set of triples can also be interpreted as a matrix (the adjacency
matrix of the weighted graph).

• C3, if it is neither C1 nor C2.

Note that a SCF that is C1 or C2 induces a collection of SCFs (one for each number
of voters), because the weighted majority graph is defined for any number of voters.

Example 3.8.

(a) Copeland’s rule ϕ is the C1 SCF defined via

ϕ(R,A) := argmax
x∈A

|{y ∈ A : xPMy}|.

In words, it chooses the vertices with maximal degree in the tournament graph.

(b) The (narrowed) Borda’s rule is C2, as the score of a candidate x is

s(x) =
∑
i∈N

|{y ∈ A : x >i y}| =
∑

y∈A\{x}

nx,y.

(c) The Maximin rule ϕ is the C2 SCF defined via

ϕ(R,A) := argmax
x∈A

min
y∈A\{x}

nx,y.

Roughly, this function chooses those candidates which do not loose “too signifi-
cantly” to any other candidate.

Proposition 3.9. Borda’s rule is not a Condorcet extension whenever there are at least
three alternatives.

Proof. Consider e.g.

2 1 1 1
a b b c
b c a a
c a c b

or

3 2
a b
b c
c a

In fact, more is true.

Theorem 3.10. No scoring rule is a Condorcet extension whenever there are at least
three alternatives.

Smith showed the following theorem in 1973.

Theorem 3.11. A Condorcet winner is never the alternative with the lowest Borda score
and a Condorcet loser is never the alternative with the highest Borda score. Borda’s rule
is the only scoring rule that never ranks a Condorcet winner last or a Condorcet loser
first.
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Example 3.12. (a) Black’s rule selects the Condorcet winner if one exists and the
Borda winners otherwise.

(b) Baldwin’s rule removes the alternatives with the lowest Borda scores, recomputes
Borda scores and then iterates this procedure until no more deletions are possible.
Note that Baldwin’s rule is not monotonic though.

Definition 3.13. A collection of SCF (ϕn)n∈N (we will just write ϕ for ϕn) satisfies
reinforcement, if for all A ∈ F (U), disjoint subsets N ′, N ′′ ⊂ N containing at least two
voters and all R′ ∈ R(U)|N

′|, R′′ ∈ R(U)|N
′′| we have

ϕ(R′, A) ∩ ϕ(R′′, A) ̸= ∅ =⇒ ϕ(R′, A) ∩ ϕ(R′′, A) = ϕ(R′ ∪R′′, A).

This property is somewhat analogous to rationalizibility.

Definition 3.14. A SCF ϕ is a composed scoring rule if it is a composition of finitely
many (and at least one) scoring rules fi; i.e.

ϕ(R) = f1(R) ◦ f2(R) ◦ · · · ◦ fk(R).

In words, a composed scoring rule applies a scoring rule to narrow down the set of
winners and may perform this procedure iteratively.

The significance of composed scoring rules is underlined by the following theorem.

Theorem 3.15. A neutral and anonymous SCF is a composed scoring rule if and only
if it satisfies reinforcement.

This means that reinforcement is the defining property of scoring rules.

Definition 3.16. A SCF ϕ satisfies cancellation, if for all preference profiles R ∈ R(U)n

whose majority relation is the all-relation, we have ϕ(R,−) = idF (U).

Young showed in 1974.

Theorem 3.17. Borda’s rule is the only SCF satisfying neutrality, Pareto-optimality (it
is even enough to assume Pareto-optimality for profiles with only one voter), reinforce-
ment and cancellation.

The following theorem shows that the concepts of Condorcet and Borda are funda-
mentally incompatible.

Theorem 3.18. No Condorcet extension satisfies reinforcement for at least three alter-
natives.

4 Kemeny’s Rule
Lec 7
2021-12-09We now assume that there exists a “true” cumulative preference ranking over the alter-

natives (e.g. in a jury decision there is only “guilty” or “not guilty” and one of those
must be true). Then we can see the preferences of the voters as estimations of the true
preference ranking. Inspired by the quote

“Democracy is the recurrent suspicion that more than half the people are
right more than half the time.”
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from E.B. White, it might be reasonable to assume that voters are right more often than
wrong; i.e. that when deciding whether a > b or b < a a voter has a probability 1

2
< p ≤ 1

to select the “correct” preference.
This idea is made precise in the following.

Definition 4.1. A SCF is a maximum likelihood SCF for a given p ∈ (1
2
, 1], if it

yields all alternatives that are most likely to be top-ranked in the “true” ranking.

Condorcet showed the following result in 1785.

Theorem 4.2. Majority rule is the maximum likelihood SCF for two alternatives and
any p ∈ (1

2
, 1].

It can be shown that Borda’s rule is the maximum likelihood SCF for some p ∈ (1
2
, 1]

that is sufficiently close to 1
2
.

Definition 4.3. A social preference function (SPF) is a function ϕ : R(U)n →
F (R(U)).

A SPF assigns to a preference profile a set of preference relations on U , so it is a
set-valued version of a SWF. The notions defined for SCFs directly translate to SPFs.
Note that if ϕ is anonymous, then R(U)n can be identified with F (R(U)), so a SPF is an
endomorphism in that case.

Definition 4.4. Kemeny’s rule is the SPF

ϕ(R) := arg max
S∈R(U)

∑
i∈N

|S ∩Ri|.

Kemeny’s rule yields all rankings that maximize pairwise agreement. For two relations
R1, R2 on U , the absolute value of the symmetric difference |R1∆R2| is called Kenoall-Tau
difference of R1 and R2.

Theorem 4.5. Kemeny’s rule is the maximum-likelihood SPF for any p ∈ (1
2
, 1].

If we consider the complete, weighted majority graph induced by a preference profile,
then a Kemeny ranking is just an acyclic subgraph with maximum (accumulated) weight.
Note that if we allowed Kemeny’s rule to return non-transitive relations, then the majority
relation RM would be the unique ranking that maximizes the Kemeny “score”.
Therefore, Kemeny’s rule can also be computed from the weighted majority graph by
finding a collection of edges with minimal accumulated weight, such that when they are
“inverted”, they make the graph acyclic.

Lemma 4.6. Let G = (V,E) be a directed graph and E ′ ⊂ E. G can be made acyclic
by inverting a subset of edges in E ′ if and only if (V,E \ E ′) is acyclic.

The “subset of edges” part is needed, since inverting all edges in a 3-cyclic graph is
not acyclic. The lemma tells us that instead of inverting edges, we can just remove them. Lec 8

2021-12-14
Theorem 4.7 (McGarvey’s Theorem). For every majority graph G = (V,E) with
weight 1 on every edge, there exists a preference profile R with an odd number of voters,
such that the strict majority relation PM equals E.
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Proof. Define the preference relation R1 of the first voter arbitrarily. For every edge
(x, y) ∈ E with (x, y) ̸∈ R1, call the other alternatives a1, . . . , al and add two voters

1 1
x al
y . . .
a1 a1
. . . x
al y

which by construction enforce this edge while not changing any of the other edges. The
resulting preference profile R has the desired properties.

5 Expansion Consistency

Our next approach is to only require expansion consistency, which is motivated by the
following theorem.

Theorem 5.1. There is no SCF satisfying anonymity on two elements, neutrality on two
elements, positive responsiveness on two elements and α.

Proof. In a Condorcet cycle with three alternatives {a, b, c}, some element, say a, has to
be in the chosen set. But by α, it also has to be contained in the winner sets of {a, b}
and {a, c}, which contradicts May’s theorem (Theorem 1.33).

5.1 The Top Cycle

Definition 5.2. A dominant set of alternatives is a set A such that any element in
A is greater than any element that is not in A w.r.t. the strict majority relation.
For A ∈ F (U) and the majority relation RM , we write Dom(A,RM) for the set of domi-
nant sets.

Note that Dom(A,RM) is totally ordered by set inclusion and thus contains a smallest
element. This means that every tournament contains a unique minimal dominant set of
alternatives.

Definition 5.3. The minimal dominant set of alternatives is called the top cycle.

Clearly, the top cycle is a Condorcet extension.
The notion of top cycles induces a SCF with some nice properties.

Definition 5.4. A SCF ϕ is finer than another SCF ϕ′, if ϕ ⊂ ϕ′.

Definition 5.5. A SCF ϕ is called binary, if the restriction of ϕ onto two element sets
uniquely determines the function; i.e. if ϕ(R)|T = ϕ(R′)|T for all two element sets T ,
then ϕ(R) = ϕ(R′).

Intuitively, for a binary SCF, the choices from larger sets only depend on the choices
from the two element sets. In particular, any rationalizable SCF is binary.

Definition 5.6. A SCF is called majoritarian if it is

• anonymous,
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• neutral,

• positive responsive on two element sets,

• binary.

This implies that a majoritarian SCF only depends on the base relation, which must
be the majority relation (Theorem 1.33). On two element sets it chooses according to
majority. In particular, any majoritarian SCF is C1. As any C1 SCF, we may view a
majoritarian SCF ϕ(−, A) for A ∈ F (U) as a function assigning a set of winners to an
oriented tournament graph.
The main difference is that a C1 SCF need not be anonymous or neutral and can choose
“arbitrarily” on two element sets. A majoritarian SCF satisfies three of Arrow’s condi-
tions, namely non-dictatorship, IIA and Pareto-optimality on two element sets.

Theorem 5.7. The top cycle SCF is the finest majoritarian SCF that satisfies β+.

In particular, on two element sets, the top cycle SCF is precisely majority rule.

Definition 5.8. For an asymmetric complete relation on a set X (and thus also for an
oriented tournament graph), the upper set D(x) :=↑ x is called dominion (or set of
successors) and the lower set D(x) :=↓ x is the set of dominators (or predecessors)
of x ∈ X.
We write Dk(x) (D0(x) = {x}) for the set of k-times iterated dominion and D(x)

(D
0
(x) = {x}) for the set of k-times iterated dominators of x. Furthermore, we de-

fine

D∗(x) :=
∞⋃
k=0

Dk(x) and D
∗
(x) :=

∞⋃
k=0

D
k
(x).

In the corresponding tournament graph, the setDk(x) contains precisely those vertices
which can be reached from x by using at most k edges and D∗(x) is the connected

component of x. Analogously for D
k
and D

∗
.

Note that we obtain a partition X = D(x) ∪ {x} ∪D(x). Lec 9
2021-12-21Starting with an alternative a ∈ A, any dominant set containing a must also contain

D
∗
(a) and this is the smallest dominant set containing a. Because Dom(A,RM) is totally

ordered by inclusion, this implies

Dom(A,RM) =
{
D

∗
(x) : x ∈ A

}
.

This gives rise to the following simple algorithm: Start with the “working set” B := {a}
and iteratively add all alternatives that dominate some alternative in B until no more
such alternatives exist. By applying this algorithm to every a ∈ A once, we can compute
Dom(A,RM) in O(|A|3).

The Copeland winners (i.e. those alternatives with a maximal number of outgoing
edges) are always contained in the top cycle. This is true, because for any alternative
a ∈ A not contained in the top cycle, any element of its domain D(a) is also dominated
by any element of the top cycle. This observation allows us to apply the above algorithm
to a Copeland winner and gives a runtime of O(|A|2).

Another idea to solve the case when the base relation is not transitive is to consider
the transitive closure R∗

M of the majority relation RM . In our notation, this means that
x > y w.r.t. R∗

M if and only if y ∈ D∗(x), which in turn is equivalent to x ∈ D
∗
(y). But

this idea just leads to the top cycle, as the following theorem shows.
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Theorem 5.9. The SCF induced by the transitive closure R∗
M of the majority relation

RM is the top cycle SCF.

Proof. This follows by observing that

x ∈ Max(R∗
M , A) ⇐⇒ ∀ y ∈ A : x ≥R∗

M
y ⇐⇒ D∗(x) = A

⇐⇒ ∀ y ∈ A : x ∈ D
∗
(y) ⇐⇒ ∀B ∈ Dom(A,RM) : x ∈ B.

This gives rise to an alternative algorithm to compute the top cycle by first determin-
ing the strong components of the strict majority graph and then choosing the maximal
one.
In general, the top cycle is rather large. A bad consequence of this is that the alterna-
tives returned are not necessarily Pareto-optimal. In the following example, the top cycle
consists of all alternatives, but the alternative c is Pareto-dominated by b.

1 1 1
a b d
b c a
c d b
d a c

5.2 The Uncovered Set

Definition 5.10. Let R be a asymmetric complete relation (an oriented tournament
graph). The cover relation of R is defined as follows:

x > y :⇐⇒ D(y) ⊂ D(x) ⇐⇒ D(x) ⊂ D(y).

and in that case, we say that x covers y.

Any cover relation is a partial order and its asymmetric part is a subrelation of the
original relation.

Applying the cover relation to the strict majority relation gives rise to another SCF.
This approach is similar to the idea using the transitive closure in the previous section,
but instead of enlarging the majority relation, we shrink it so that it becomes transitive.

Definition 5.11. The uncovered set consists of all alternatives that are maximal w.r.t.
the cover relation C of the strict majority relation. The corresponding SCF UC(A,PM) :=
Max(C,A) is the uncovered set SCF.

This is a Condorcet extension.
It is helpful to observe that

a ∈ UC(A) ⇐⇒ ∄x ∈ A : x >C a ⇐⇒ ∀ x ∈ D(a) ∃ y ∈ D(a) : y >PM
x.

In other words, for a ∈ UC(A), every edge b → a (i.e. b dominates a) has a corre-
sponding cycle b → a → c → b for some c ∈ A. In particular, this implies the following
equivalent characterization of the uncovered set.
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Theorem 5.12. The uncovered set w.r.t. the strict majority relation on a set of alterna-
tives consists precisely of those alternatives that reach every other alternative in at most
two steps.

This gives rise to an algorithm that computes A :=M2 +M +M0 for the adjacency
matrix M and only returns those indices for which the corresponding row in A has only
nonzero entries.

Moulin proved the following characterization of the uncovered set in 1986.

Theorem 5.13. The uncovered set SCF is the finest majoritarian SCF satisfying γ.

Because β+ implies γ, Theorem 5.7 shows that the uncovered set is always contained
in the top cycle.

In contrast to the uncovered set SCF, the top cycle SCF is Pareto-optimal.

Proposition 5.14. The uncovered set SCF is Pareto-optimal.

One can show that the uncovered set SCF is also the largest majoritarian SCF satisfy-
ing Pareto-optimality, so it is the only majoritarian SCF that satisfies Pareto-optimality
and γ.

5.3 The Banks Set
Lec 10
2022-01-11Definition 5.15. Let R be a relation on A. A transitive subset of A is a subset B ⊂ A,

such that R is transitive on B.

Note that a tournament (A,PM) is transitive if every subtournament has a Condorcet
winner.

Definition 5.16. The Banks set is the set consisting of the maximal elements of all
inclusion-maximal transitive subsets of the alternatives A w.r.t. the strict majority rela-
tion PM . This induces the Banks SCF.

Note that x is in the Banks set of A if and only if it “cannot be extended from above”;
i.e. if and only if there exists a transitive subset B ⊂ A, such that x ∈ Max(R,B) and
there is no a ∈ A that dominates all b ∈ B.

Definition 5.17. A choice function S : F (U) → F (U) satisfies strong retentiveness
(ρ+), if for all A ∈ F (U) and x ∈ A, we have S(D(x) ∩ A) ⊂ S(A).

Intuitvely, a choice function satisfies ρ+, if the best elements from all dominator sets
have to be chosen.

Lemma 5.18. A majoritarian SCF that satisfies γ also satisfies ρ+.

Theorem 5.19. The Banks SCF is the finest majoritarian SCF satisfying ρ+.

Combining Theorem 5.13, Lemma 5.18 and Theorem 5.19, it follows that the Banks
set is always contained in the uncovered set. With Proposition 5.14, this implies that the
Banks SCF is Pareto-optimal.

Furthermore, the Banks SCF is a Condorcet extension. It is even a strong Condorcet
extension, meaning that it selects a unique winner if and only if that winner is a Condorcet
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winner. Because the Banks set is included in the uncovered set, which is included in the
top cycle, it follows that all three of those SCFs are strong Condorcet extensions.

By starting with a “working set” B consisting of an arbitrary alternative and itera-
tively adding alternatives that dominate all elements in B, we can compute an element
of the Banks set in O(|A|2). However, deciding whether a given alternative is contained
in the Banks set is NP-complete.

Definition 5.20. A choice function S : F (U) → F (U) satisfies retentiveness (ρ), if for
all A ∈ F (U) and x ∈ S(A), we have S(D(x) ∩ A) ⊂ S(A).

By definition, ρ is a weakening of ρ+.

5.4 The Tournament Equilibrium Set

Definition 5.21. Let S : F (U) → F (U) be an arbitrary choice function.
A set B ∈ F (U) is S-retentive, if for all x ∈ B, we have S(D(x)) ⊂ B.

The idea behind the notion of S-retentive sets is that no alternative in the set should
be “properly” dominated by an outside alternative.

Definition 5.22. For a choice function S : F (U) → F (U), we construct the new choice
function S̃ : F (U) → F (U) that assigns to A ∈ F (U) the union of all inclusion-minimal
S-retentive subsets of A.

Proposition 5.23. The˜operator only returns choice functions that satisfy ρ.

Example 5.24. For the identity choice function id, ĩd is the top cycle.

Definition 5.25. The tournament equilibrium set of a tournament TEQ is the

unique fixed point of the˜operator; that is, TEQ = T̃EQ.

It can be shown that the tournament equilibrium set is always contained in the Banks
set.

6 Consistency on Sets
Lec 11
2022-01-186.1 Set-rationalizability

We redefine notions like α and γ by only refering to the set of chosen alternatives, instead
of the individual elements themselves.

Definition 6.1. A choice function S : F (U) → F (U) is called set-rationalizable, if
there is a relation R ⊂ F (U) × F (U) on F (U), such that there is a unique maximum
Max(R,A) for every A ∈ F (U) and that S = Max(R,−) ◦ F .

The base relation (on U) of S : F (U) → F (U) can be extended to F (U) by defining

X > Y :⇐⇒ X = S(X ∪ Y ).

We recall that a choice function S : F (U) → F (U) satisfies
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• α, if

∀A,B ∈ F (U), x ∈ A ∩B : x ∈ S(A ∪B) ⇒ x ∈ S(A) ∧ x ∈ S(B).

• γ, if

∀A,B ∈ F (U), x ∈ A ∩B : x ∈ S(A ∪B) ⇐ x ∈ S(A) ∧ x ∈ S(B).

We transfer these concepts to our new setting.

Definition 6.2. A choice function S : F (U) → F (U) satisfies

• α̂, if

∀A,B ∈ F (U), X ⊂ A ∩B : X = S(A ∪B) ⇒ X = S(A) ∧X = S(B).

• γ̂, if

∀A,B ∈ F (U), X ⊂ A ∩B : X = S(A ∪B) ⇐ X = S(A) ∧X = S(B).

Despite the formal similarities, α and α̂ are not logically related and the same holds
true for γ and γ̂.

Lemma 6.3. A choice function S : F (U) → F (U) satisfies α̂, if and only if for all
V,W ∈ F (U) with S(V ) ⊂ W ⊂ V , we have S(V ) = S(W ).

Intuitively, the previous lemma states that a choice function satisfying α̂ is invariant
under removing non-chosen alternatives.
In particular, any SCF satisfying α̂ must be idemptotent (in its second argument).

Theorem 6.4. A choice function S : F (U) → F (U) is set-rationalizable if and only if it
satisfies α̂.

Definition 6.5. A choice function S : F (U) → F (U) is called stable, if it satisfies α̂ and
γ̂.

Theorem 6.6. A choice function S : F (U) → F (U) is quasi-transitively rationalizable if
and only if it satisfies α, α̂ and γ̂.

Proposition 6.7. Every non-trivial monotonic scoring rule violates α̂.

The choice functions induced by most social choice functions we discussed so far
violate α̂, but it is not hard to see that e.g. the top cycle is even stable.

Definition 6.8. Let (A,R) be a complete relation and p : A → [0, 1] a probability dis-
tribution. p is called optimal, if the utility function

up : A→ R, x 7→
∑

y∈D(x)

p(y)−
∑

y∈D(x)

p(y)

maps to the nonnegative real numbers.
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Intuitively, an optimal probability distribution puts “more probability” on the alter-
natives that dominate x than those that are dominated by it for each x ∈ A.

Theorem 6.9. Every complete relation (A,R) admits a unique optimal probability dis-
tribution.

Proof. We first note that for any probability distribution p

∑
x∈A

p(x)up(x) =
∑
x∈A

p(x)

 ∑
y∈D(x)

p(y)−
∑

y∈D(x)

p(y)


=

∑
x,y∈A, x̸=y

p(x)p(y)(2 · JyPMxK − 1) = 0.

As a consequence, if p is optimal, then up(x) = 0 for all x ∈ A with p(x) > 0.
We now prove the existence of an optimal probability distribution by induction on |A|.
The base case |A| = 1 is clear, so suppose |A| > 1. Aiming for contradiction, assume
that for any probability distribution p, ν := minx∈A up(x) < 0. We may assume that
p is chosen such that ν is maximal. Then there exists z ∈ A with up(z) ≥ 0. By the
induction hypothesis, there is a probability distribution q with q(z) = 0 and uq(z) ≥ 0
for all x ∈ A \ {z}. But then for ϵ ∈ (0, 1), r := (1− ϵ)p+ ϵq satisfies

ur(x) ≥ (1− ϵ)ν + ϵ · 0 > ν ∀ x ∈ A \ {z}

and if ϵ is small enough (ϵ < − ν
|uq(z)|) also

ur(z) = (1− ϵ)up(z) + ϵuq(z) > ν.

But this contradicts the maximality of p, which proves the claim.
We now show the uniqueness of optimal probability distributions. Aiming for contradic-
tions, we assume that p and q are optimal for (A,R) and p ̸= q. By considering a convex
combination λp+(1−λ)q and µp+(1−µ)q for λ, µ ∈ (0, 1), λ ̸= µ, we may assume that
p and q have the same support B. Let r(x) := p(x)− q(x). Then∑

y∈D(x)

r(y)−
∑

y∈D(x)

r(y) =
∑

y∈D(x)

(p(y)− q(y))−
∑

y∈D(x)

(p(y)− q(y))

= up(x)− uq(x) = 0− 0 = 0 ∀x ∈ B.

and ∑
x∈B

r(x) = 0

hold and constitute a finite homogeneous system of linear equations for r ∈ R|B| with
integer coefficients. It is known that such a system has a non-zero integer solution r∗ ∈
Z|B|. By repeatedly dividing r∗ by 2, we may assume that r∗(b) is odd for some b ∈ B.
We extend r∗ to all of A by setting it to zero for elements not in B. For x ∈ B, we
calculate

0 =
∑
x∈B

r∗(x) = r∗(x) +
∑

y∈D(x)

r∗(y) +
∑

y∈D(x)

r∗(y) = r∗(x) + 2 ·
∑

y∈D(x)

r∗(y),

so for all x ∈ B, r∗(x) is even, contradicting our assumption.
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Alternatively, the existence can also be shown using the minimax theorem. The op-
timal distribution corresponds to the unique Nash equilibrium (or maximin strategy) of
the zero-sum game given by the skew-adjacency matrix of the tournament.

Definition 6.10. The bipartisan set consists precisely of those alternatives that are
in the support of the optimal probability distribution on (A,RM). This induces the
bipartisan set SCF.

It can be shown that the bipartisan set always contains an odd number of alternatives
and is contained in the uncovered set. In particular, the bipartisan SCF is a Condorcet
extension.

Theorem 6.11. The bipartisan set SCF is stable and satisfies strong monotonicity (i.e.
it is invariant under the weakening of unchosen alternatives).

6.2 Gibbard-Satterthwaite Impossibility Theorem
Lec 12
2022-01-25Definition 6.12. A SCF ϕ is called strongly monotonic if for all R,R′ ∈ R(U)n,

A ∈ F (U) with R = R′ except for some i ∈ N , x ∈ A \ ϕ(R,A), y ∈ A, where (x, y) ∈ R
but (y, x) ∈ R′, we have ϕ(R,A) = ϕ(R′, A).

Intuitively, a strongly monotonic SCF is one that is invariant under weakening uncho-
sen alternatives. For resolute SCFs, the property allows us to apply any changes to the
preferences of the voters without changing the outcome, as long as the set of candidates
that are less prefered than the winner is kept or enlarged.
In particular with a strongly monotonic SCF one can arbitrarily change the preferences
of the voters over the unchosen alternatives.

Lemma 6.13. Any strongly monotonic SCF is monotonic.

Muller and Satterthwaite showed the following theorem in 1977.

Theorem 6.14. A resolute SCF is strategyproof if and only if strongly monotonic.

Proof. Fix a set A ∈ F (U) and for simplicity we omit it from the notation.
Let ϕ be a resolute SCF and R,R′ ∈ R(U)n with R|N\{i} = R′|N\{i}. Note that strate-
gyproofness is equivalent to

∀Ri, R
′
i ∈ R(U) : ϕ(R) = {x} ̸= {y} = ϕ(R′) ⇒ xPiy ∧ yP ′

ix. (∗)

If ϕ satisfies (∗), ϕ(R) = {x} and for all z ∈ A with xPiz we have xP
′
iz, then ϕ(R

′) = {x},
because the opposite would contradict (∗).
For the other direction, we suppose that ϕ(R) = {x} ̸= {y} = ϕ(R′) and yPix or xP ′

ix.
By potentially interchanging R and R′, we may assume that yPix. Define R

′′ to be

R′′
i = Ri \ {(z, y) : z ̸= y} ∪ {(y, z) : z ̸= y},

which amounts to moving y to the top of the preference profile. Now we can conclude
that ϕ cannot be strongly monotonic, since otherwise ϕ(R′′) = {x} and ϕ(R′′) = {y}.

Oftentimes it is easier to work with strong monotonicity than strategyproofness.
Of course, for two alternatives monotonicity and strong monotoncity are equivalent,

so we obtain the first part of Theorem 1.32 as a corollary.
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Theorem 6.15. No resolute Condorcet extension satisfies strong monotonicity for at
least three voters and alternatives.

Proof. Let ϕ a resolute function that satisfies strong monotonicity and let R be a Con-
dorcet cycle with three voters and alternatives. Then by resoluteness, ϕ produces a unique
winner for R. Using strong monotoncity we can move one of the unchosen alternatives
down in such a way that a different alternative emerges as the Condorcet winner without
changing the result. This shows that a SCF satisfying strong monotoncity cannot be a
Condorcet extension on three voters and alternatives.
For the general case, just add alternatives to the bottom of the preference profiles and
for each pair of additional voters (we are assuming that the number of voters is odd, even
though the statement can also be proven for an even number of voters) we may add an
arbitrary preference profile and its inverse (reversed version).

Definition 6.16. A SCF ϕ is called non-imposing if for eachA ∈ F (U), ϕ(−, A) : R(U)n →
F (U) satisfies {{x} : x ∈ A} ⊂ im(ϕ(−, A)).

This is a very weak condition. For example, Pareto-optimality implies the non-
imposing condition. The following lemma shows that for strongly monotonic SCFs, the
two notions are actually equivalent.

Lemma 6.17. A non-imposing and strongly monotonic SCF is Pareto-optimal.

We can now prove another impossibility theorem, which is just as important as Arrow’s
impossibility theorem (Theorem 1.38).

Theorem 6.18 (Gibbard-Satterthwaite Impossibility Theorem). Every non-imposing,
strategyproof and resolute SCF over at least three alternatives is dictatorial.

For two alternatives, majority rule satisfies the conditions in the theorem without
being dictatorial.

In particular, the theorem directly implies Theorem 6.15.

Theorem 6.19. No resolute Condorcet extension satisfies participation when there are
at least 12 voters and 4 alternatives.

6.3 Extending Preference Relations
Lec 13
2022-02-02Because resolute SCFs are never neutral, we usually prefer to work with non-resolute

SCFs. However, in that case, it is hard to decide whether an outcome (which is a set of
alternatives) is prefered by some voter to another outcome. Therefore, we need to extend
the relations of the voters on U to a relation on F (U). Our first solution to this problem
was to consider the power set relation (see Definition 1.28). We can now generalize this
notion and introduce another way to lift preferences on alternatives to preferences on sets
of alternatives.

Definition 6.20. We call a map ψ : R(U) → R(F (U)) a preference extension.
A SCF ϕ is called ψ-manipulable by voter i ∈ N , if there exists A ∈ F (U) and two
preference profiles R,R′ ∈ R(U)n whose j-th components agree for all j ̸= i, such that i
strictly prefers ϕ(R′, A) to ϕ(R,A) w.r.t. ψ(Pi).
A SCF is called ψ-strategyproof, if it is not ψ-manipulable by any voter.
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Thus Definition 1.28 is a special case, where ψ assigns to R ∈ R(U) the power set
relation P(R).

Definition 6.21. Kelly’s preference relation Rk on F (U) induced by a preference
relation R on U is defined by

X ≥Rk Y :⇐⇒ ∀ x ∈ X, y ∈ Y : x ≥R y.

We denote the strict part of Rk by P k.
The corresponding preference extension is called Kelly’s preference extension.

By definition, we have

X >Pk Y :⇐⇒ (∀x ∈ X, y ∈ Y : x ≥R y) ∧ (∃ x ∈ X, y ∈ Y : x >P y).

If the given preference relation P is strict (e.g. the preference relation of a voter)
with symmetric completion R, then two comparable sets w.r.t. P k can have at most one
element in their intersection.

Clearly, a SCF that is manipulable is also Rk-manipulable.

Theorem 6.22. Every strongly monotonic SCF is Rk-strategyproof.

Theorem 6.23. Every SCF satisfying monotonicity, α̂ and IIA is also strongly mono-
tonic.

Proof. Let ϕ be a SCF with the above properties, R,R′ ∈ R(U)n identical preference
profiles except that xPiy instead of yP ′

ix and x /∈ ϕ(R). Then x /∈ ϕ(R′) by monotonicity,
so IIA implies for all A ∈ F (U)

ϕ(R,A)
α̂
= ϕ(R,A \ {x}) = ϕ(R′, A \ {x}) α̂

= ϕ(R′, A).

For example, the top cycle SCF and bipartisan set SCF are strongly monotonic by the
above theorem and thus in particular Rk-strategyproof by Theorem 6.22. Furthermore,
it can be shown that the uncovered set SCF is Rk-strategyproof.

We now generalize Definition 2.3.

Definition 6.24. Let ψ : R(U) → R(F (U)) be a preference extension and n ∈ N∪{∞}.
A collection of SCF{

ϕj : R(U)
j → {choice function S : F (U) → F (U)} : j ∈ {2, . . . , n}

}
can be ψ-manipulated by strategic abstention, if there exists j ∈ {3, . . . , n}, R ∈
R(U)j and A ∈ F (U), such that ϕj−1(R−j, A) > ϕj(R,A) w.r.t. ψ(Pj). Here R−j ∈
R(U)j−1 denotes the preference profile R, but with the j-th component removed.
Otherwise it satisfies ψ-participation.

Definition 6.25. We call a collection{
ϕj : R(U)

j → {choice function S : F (U) → F (U)} : j ∈ N, j ≥ 2
}

of C1 (or C2) SCF ϕj compatible, if ϕi(R) = ϕj(R
′) whenever R ∈ R(U)i induces the

same majority graph (or weighted majority graph) as R′ ∈ R(U)j.
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Theorem 6.26. Let ψ be a preference extension. A compatible collection{
ϕj : R(U)

j → {choice function S : F (U) → F (U)} : j ∈ N, j ≥ 2
}

of majoritarian ψ-strategyproof SCFs ϕj also satisfies ψ-participation.

Proof. By contraposition, we assume that there exist n ∈ N, R ∈ R(U)n and i ∈ N such
that ϕn−1(R−i) > ϕn(R) w.r.t. ψ(Pi). We want to show that at least one of the ϕj is not
ψ-strategyproof.
Consider the “doubled” preference profile R′ ∈ R(U)2n in 2n voters, in which the first j
voters have the same preference as they have in R and the (n+ j)-th voter has the same
preferences as voter j for j ∈ {1, . . . n}. Additionally, we define the preference profile R′′

like R′, but invert the preferences of the i-th voter. This means that voter i and n + i
“cancel each other out” in the resulting majority graph.
Because the collection is compatible, all SCFs are majoritarian and by assumption, we
have

ϕ2n(R
′′) = ϕn−1(R−i) > ϕn(R) = ϕ2n(R

′) w.r.t. ψ(Pi),

which shows that ϕ2n is ψ-manipulable by voter i.

In particular, the top cycle, the uncovered set and the bipartesian set SCFs satisfy
Rk-participation.

We now define another preference extension, which is stronger than Kelly’s preference
extension in the sense that more sets are comparable.

Definition 6.27. Fishburn’s preference relation Rf on F (U) induced by a preference
relation R on U is defined by

X ≥Rf Y :⇐⇒ (∀x ∈ X \ Y, y ∈ Y : x ≥R y) ∧ (∀ x ∈ X, y ∈ Y \X : x ≥R y).

The corresponding preference extension is called Fishburn’s preference extension.

As mentioned, Fishburn’s preference relation extends that of Kelly; that is, Rk ⊂ Rf .
We adapt the notion of non-imposing SCFs (Definition 6.16) to sets.

Definition 6.28. A SCF is set non-imposing, if for every A ∈ F (U) and X ∈ F (A),
there exists some R ∈ R(U)n such that f(R,A) = X.

Theorem 6.29. The top cycle SCF is the only majoritarian SCF that is Rf -strategyproof
and set non-imposing.

7 Probabilistic Social Choice

Our approach using SCFs has lead to many impossibility results, which is rather unsat-
isfying. It thus seems natural to consider another notion of “decision functions”; namely
those which are allowed to return a probability distribution over the alternatives that can
be used to decide the winner.
By fixing the set of feasible alternatives A ⊂ U , any SCF ϕ gives rise to a map R(U)n →
F (A). Furthermore, if ϕ satisfies IIA, this is really a map R(A)n → F (A) so by replacing
U with A we may assume that U = A.
We now generalize this type of function by allowing the returned value to be a probability
vector whose i-th component describes the probability that the i-th alternative should
win.
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Definition 7.1. A social decision scheme (SDS) is a function ϕ : R(U)n → P , where
P denotes the simplex

P :=

{
p ∈ Rm, pi ≥ 0 ∀ i ∈ {1, . . . ,m},

m∑
j=1

pj = 1

}
⊂ Rm

of probability distributions on the m candidates.

In order to decide whether a voter prefers a given probability distribution to another,
we define the following concept.

Definition 7.2. A function u : U → R is a utility function w.r.t. a given relation R
on U if it is strictly monotonic.

If the relation on U is complete (e.g. the preference relation of a voter), this just
means that

u(x) ≥ u(y) ⇐⇒ x ≥R y ∀ x, y ∈ U.

For a given preference profile R ∈ R(U)n, any SDS yields a probability distribution p
on the universe of alternatives U , so we obtain a probability space (U,P(U), p). Then any
function u : U → R is a random variable. If u is a utility function w.r.t. the preferences
of some voter i, then the expected value

E[u] =
∑
a∈U

pau(a)

of u can be used to quantify how much the voter likes this particular outcome of the
election (namely drawing a random candidate w.r.t. p in order to determine the winner).
This is made precise in the following definition.

Definition 7.3. Let U be the set of alternatives, p a probability distribution on U , i ∈ N
a voter, R ∈ R(U)n a preference profile and u : U → R a utility function w.r.t. Ri. The
expected utility u(i, p) of voter i is the expected value E[u] of u w.r.t. p.

We can now adapt Definition 1.28 to SDSs.

Definition 7.4. A SDS ϕ is manipulable if there exist R,R′ ∈ R(U)n with R|N\{i} =
R′|N\{i}, i ∈ N and a utility function u : U → R w.r.t. Ri, such that u(i, ϕ(R′)) >
u(i, ϕ(R)).
ϕ is strategyproof, if it is not manipulable by any voter.

Just like before, the intuition is that a manipulable SDS is one where a voter might
be able to submit a “fake” version of their preferences in order to obtain an outcome they
prefer, provided they know how the other voters vote.

Theorem 7.5. Every SDS that puts probability 1 on a Condorcet winner can be manip-
ulated if there are at least three voters and alternatives.

Proof. We only prove the special case of three voters and alternatives.
Let ϕ be a SDS that puts probability 1 on a Condorcet winner and R′ the preference
profile given by a Condorcet cycle over three voters and alternatives:
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1 1 1
a b c
b c a
c a b

Without loss of generalize we may assume that ϕ(R′)(a) > 0. Let R be the preference
profile obtained from R′ by interchanging b and c in the first column. Then ϕ(R)(c) = 1,
because c is a Condorcet winner in R. Let u : U → R be a utility function such that

u(a) = 1, u(c) ∈ (0, ϕ(R′)(a)), u(b) = 0.

Then this constitutes a utility function w.r.t. R1 and by construction

u(1, ϕ(R′)) ≥ ϕ(R′)(a) > u(c) = u(1, ϕ(R)),

so ϕ is manipulable by voter 1.

Definition 7.6. Let p be a probability distribution on the voters. The SDS that picks
a voter at random w.r.t. p and then returns that voter’s favorite alternative is called
random dictatorship SDS.

Next we adapt Definition 6.16 to this probabilistic setting.

Definition 7.7. A SDS is called non-imposing, if its image contains all degenerate
probability distributions (i.e. those which assign probability 1 to some alternative).

We can now state an impossibility result similar to that of Gibbard-Satterthwaite
(Theorem 6.18).

Theorem 7.8. Every non-imposing, non-manipulable SDS is a random dictatorship for
at least three voters.

We can obtain a SDS from any scoring rule (assuming all scores are non-negative and
some alternative always has a positive score) by assigning an alternative its score divided
by the sum of the scores of all alternatives.
For example, the SDS obtained from Borda’s rule is not non-imposing.

Definition 7.9. For a preference profile R ∈ R(U)n, let M be the majority margin
matrix Mi,j = nx,y − ny,x. A probability distribution p is called maximal if MT · p ≥ 0.

This can be thought of as a randomized Condorcet winner or a C2 version of optimal
distributions (Definition 6.8). It can be shown that a maximal lottery always exists, is
unique and can be computed efficiently using linear programming.
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