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1 Preliminaries
Lec 1
2023-04-19We start by briefly recalling the most important definitions and theorems regarding com-

plex analysis.
Without explicit mention, we will identify C and R2 as R vector spaces via the R-
isomorphism C→ R2, x+ iy 7→ (x, y).

Definition 1.1. A region is a nonempty open connected subset of C.

Because an open subset of a locally path-connected space (like C) is connected if and
only if it is path-connected, we have the following statement.

Theorem 1.2. A nonempty open subset of C is a region if and only if it is path-connected.

Definition 1.3. Let U ⊂ C be open. A function f : U → C is called

(a) holomorphic (on U), if it is complex differentiable at every point of U .

(b) holomorphic (at z0 ∈ U), if f is holomorphic on a neighborhood of z0.

(c) analytic on U , if it can be expanded into a power series with positive radius of
convergence at every point of U ; i.e. for any z0 ∈ U there exists a neighborhood V
of z0 and coefficients aj ∈ C, such that f(z) =

∑∞
j=0 aj(z − z0)

j for all z ∈ V .

Definition 1.4. The triangle (in C) with corners z0, z1, z2 ∈ C is the convex hull of
those three points; i.e. it is the compact set

∆ = {p0z0 + p1z1 + p2z2 : p0, p1, p2 ∈ [0, 1], p0 + p1 + p2 = 1}.

Theorem 1.5. Let G ⊂ C be a region and z0 ∈ G. Every power series of the form
z 7→

∑∞
j=0 aj(z − z0)

j (for fixed coefficients aj ∈ C) is a holomorphic function on the
interior of its disk of convergence.

Theorem 1.6 ([Bor16, Thm 1.7.4]). If f : U → C is holomorphic and z0 ∈ U with
f ′(z0) ̸= 0 then f is locally biholomorphic at z0; that is, there exists an open neighborhood
U0 of z0, such that the restriction f : U0 → f(U0) is holomorphic with holomorphic inverse.

As a consequence, on the open set f ′−1(C×) where its derivative does not vanish, any
holomorphic function f is locally approximated by its first Taylor expansion

z 7→ f(ξ) + f ′(ξ) · (z − ξ) for ξ ∈ f−1(C×),

which essentially just translates, rotates and scales a small shape. Therefore, for ξ ∈ C
with f ′(ξ) ̸= 0, it locally preserve angles and orientations.

Theorem 1.7 (Cauchy-Goursat-Morera-Weierstrass).
Let G ⊂ C be a region and f : G→ C a continuous function.
The following statements are equivalent:

(a) f is holomorphic on G.

(b) For any triangle ∆ ⊂ G, we have
∫
∂∆
f(z)dz = 0.

(c) f : G → C can be represented at every z0 ∈ G as a power series of the form∑∞
j=0 aj(z − z0)

j with positive radius of convergence.
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Furthermore, if f is holomorphic, the power series converges on the largest disk around
z0 contained within G and the coefficients can be computed as follows (for r > 0 small
enough):

aj =
1

2πi

∫
∂Br(z0)

f(ξ)

(ξ − z0)j+1
dξ.

Definition 1.8. Let U ⊂ G be open. The set of all holomorphic functions f : U → C is
denoted by

O(U) := {f : U → C holomorphic}.

Proposition 1.9 (Principle of Analytic Continuation).
Let G ⊂ C be a region. For f ∈ O(G), if there is a nonempty open subset U ⊂ G, such
that f |U = 0, then f = 0. In particular, two functions agreeing on a nonempty open set
are equal.

In words, the proposition states that holomorphic functions are uniquely determined
by their local behavior on any open set.
In particular, the set of zeros of f ∈ O(G) \ {0} has an empty interior and such a f is
never compactly supported.
Note that the statement is false if G is not connected, since the function could e.g. be
constant on every connected component, attaining a diffferent value on each of them.

Definition 1.10. A sequence (xn) in a topological space is called eventually constant,
if there exists N ∈ N, such that for all n,m ≥ N , we have xn = xm.
For brevity, a sequence that is not eventually constant is called non-trivial.
Let V ⊂ X be a subset of a topological space X. V has an accumulation point (in
X), if there exists a non-trivial sequence in V converging to some element of X.
V is called discrete (in X), if it inherits the discrete topology from X; i.e. if for all
x ∈ V , there exists a neighborhood U of x, such that U ∩ V = {x}.

Unfortunately, in the literature the terminology and definitions vary. For example,
[Bor16, Def 3.1.1] uses discrete for having no accumulation points and calls sets that
inherit the discrete topology locally finite. On the other hand, only closed sets inheriting
the discrete topology are called locally finite in [RS07]. It is also common to call the sets
inheriting the discrete topology isolated.

The following lemma establishes the relation between these different notions.

Lemma 1.11. Let (X, d) be a metric space. A subset V ⊂ X has no accumulation points
if and only if it is discrete and closed.
In particular, a set has no accumulation point in itself if and only if it is discrete.

Proof. If V is not discrete, then there exists x ∈ V , such that for every n ∈ N>0, we have
B 1

n
(x) ∩ V ̸= {x}. Consequently, we can choose a non-trivial sequence converging to x,

showing that V has an accumulation point.
Similarly, if V is not closed, there exists x /∈ V and a sequence xn ∈ V converging to x,
so again V has an accumulation point.
On the other hand, if V is discrete and closed, the limit of a convergent sequence (xn) ∈ V
must lie in V . Because V inherits the discrete topology, this shows that the sequence is
eventually constant.
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It should be noted that these notions are quite subtle, they all depend on the ambient
topological space X. For example, the set

{
1
n
: n ∈ N>0

}
⊂ C is discrete (in C) but is

not closed and clearly has an accumulation point.

Proposition 1.9 can be strengthened. Any two holomorphic functions defined on a
region and agreeing on a set having an accumulation point are equal.

Theorem 1.12 (Identity Theorem).
Let G ⊂ C be a region, f, g ∈ O(G) and S ⊂ G a subset having an accumulation point.
If f |S = g|S, then f = g.

Proposition 1.13. For a region G ⊂ C, the set O(G) with pointwise addition and
multiplication is a commutative C-algebra without zero divisors.

Proof. The commutative C-algebra structure is easy to verify. To see that there are no
zero divisors, suppose that f · g = 0 and f(z) ̸= 0 for some z ∈ G. By continuity, we
can find an open neighborhood U ⊂ G, such that f is nonzero on all of U . Therefore,
g|U = 0 and Proposition 1.9 implies the claim.

Theorem 1.14 (Liouville’s theorem).
Every bounded holomorphic function f : C→ C is constant.

Theorem 1.15 (Open Mapping Theorem (of complex analysis)).
Any non-constant holomorphic function f ∈ O(U) is an open map.
In particular, holomorphic functions preserve regions (the image of a region is another
region).

Definition 1.16. Let U ⊂ C be open. A function f : U → C is called meromorphic
(on U), if there is an open subset V ⊂ U , such that

(a) f is holomorphic on V .

(b) The complement U \ V is discrete in U .

(c) For all points p ∈ U \ V , we have limz→p|f(z)| = ∞ (i.e. 1
limz→p|f(z)| = 0).

The elements of P (f) := U \ V are called the poles of f .
f is called meromorphic at z0 ∈ U , if z0 admits an open neighborhood on which f is
meromorphic.

By Lemma 1.11, we may equivalently demand that U \ V has no accumulation point
in U .

If f : U → C is a meromorphic function and is holomorphic at p ∈ U , then limz→p|f(z)| =
|f(p)|, so that the set of poles of f is precisely the complement of the set of points where
f is holomorphic. In particular, the set of poles P (f) is uniquely determined.

Definition 1.17. Let U ⊂ C be open. The set of all meromorphic functions is denoted
by

M(U) := {f : U → C meromorphic}.

Proposition 1.18. For a region G ⊂ C, let f ∈ O(G) \ {0} and let Z denote the set of
zeros of f . Then the function 1

f
: G→ C is meromorphic with set of poles Z.
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Proof. Clearly, g := 1
f
is holomorphic on G \ Z. Furthermore, Z is discrete and closed

by Theorem 1.12 and Lemma 1.11. Thus for p ∈ Z, we can choose r > 0, such that
Br(p) ⊂ G and Br(p) ∩ Z = {p}. Because g is holomorphic on Br(p) \ {p} and f is
continuous, we have

lim
z→p

|g(z)| = lim
z→p

1

|f(z)|
= ∞

and thus p is a pole of g.

For a meromorphic function f with set of poles P (f), the behavior of f on P (f) is
somewhat arbitrary. For example, the function f : C× → C, z 7→ 1

z
can be extended to

the whole complex plane by setting its value at zero arbitrarily and it is meromorphic on
C in any case. This freedom of choice may seem unsatisfactory; indeed it is resolved by
adding an extra point ∞ and demanding that the set of poles are precisely those points
mapping to ∞ (see Definition 2.3).
Alternatively, one can consider two meromorphic functions to be equal if they agree
except possibly at their poles. For this, we identify two such functions (via an equivalence
relation ∼) whenever they agree everywhere but on a discrete set.

Proposition 1.19. If G ⊂ C is a region, the set of equivalence classes M(G)/ ∼ with
pointwise addition and multiplication is a field and C-algebra with pointwise addition
and multiplication.

Proof. We will prove a slightly more general result in Proposition 2.18.
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2 The Riemann Sphere
Lec 2
2023-04-26In this section (which follows [JS87, Ch 1]), we define the Riemann sphere as a compact

“extension” of the complex plane C. We then transfer the key notions of holomorphy
and meromorphy to this new setting.

2.1 Topological Properties of the Riemann Sphere

Let S2 := {ξ ∈ R3 : ξ21 + ξ22 + ξ23 = 1} denote the 2-dimensional sphere in R3 and identify
the z-plane E := {ξ ∈ R3 : ξ3 = 0} with C.

One disadvantage of the complex plane is that it is not compact. This problem can
be solved by constructing its one-point compactification (also called Alexandroff compact-
ification).

We connect an arbitrary point ξ ∈ S2 \ {N} with the north pole N := (0, 0, 1) of the
sphere S2 and denote its intersection with C by π0(ξ) ∈ R3. This procedure defines the
stereographic projection π0 : S

2 \ {N} → C, which we now compute.

Figure 1: The stereographic projection π0 mapping a point (ξ1, ξ2, ξ3) ∈ S2 \ {N} to
(x, y) ∈ E (i.e. in C).

Figure 2: Projecting onto the x-plane or the y-plane allows us to compute the map π0
concretely.
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By projecting onto the x-plane or the y-plane, the similarity of the triangles yields

x

1
=
x− ξ1
ξ3

,
y

1
=
y − ξ2
ξ3

,

which implies

x =
ξ1

1− ξ3
, y =

ξ2
1− ξ3

.

Therefore, the stereographic projection is continuous and can be defined as follows.

Definition 2.1. Let N = (0, 0, 1) ∈ S2 denote the north pole of the sphere S2. The
stereographic projection is

π0 : S
2 \ {N} → C, ξ 7→ ξ1

1− ξ3
+ i

ξ2
1− ξ3

.

Since ξ ∈ S2, we have

x2 + y2 + 1 =
ξ21 + ξ22 + (1− ξ3)

2

(1− ξ3)2
=

2− 2ξ3
(1− ξ3)2

=
2

1− ξ3

and thus a straightforward calculation yields

ξ1 =
2x

1 + x2 + y2
, ξ2 =

2y

1 + x2 + y2
, ξ3 =

x2 + y2 − 1

1 + x2 + y2
.

This gives the continuous inverse of the stereographic projection π0 : S
2 \ {N} → C,

establishing that it is a homeomorphism (where S2 \ {N} ⊂ R3 is equipped with the
subspace topology).

Therefore, the stereographic projection shows that S2 \ {N} is topologically the same
as C. However, if we consider the whole sphere S2, then there is an extra point, namely
the north pole N .

It is obvious from Fig. 1 (and can be confirmed by a calculation) that the stereographic
projection π0 maps the latitudinal circle C(h) := {ξ ∈ S2 : ξ3 = h} for arbitrary h ∈
[−1, 1) to the planar circle P (h) :=

{
z ∈ C : |z| =

√
1+h
1−h

}
; that is, π0 restricts to a

homeomorphism C(h) → P (h). Therefore, the images of closer and closer circles around
the north pole (h → 1) are circles of larger and larger radius in the complex plane.
Therefore, the north pole N can be thought of as the unique “point at infinity”. In
particular, choosing a sequence sn → N on the sphere corresponds to a sequence (zn) ∈ C
such that |zn| → ∞.

We summarize our results:

Lemma 2.2. The stereographic projection π0 : S
2 \ {N} → C is a homeomorphism

and restricts to a homeomorphism {ξ ∈ S2 : ξ3 = h} →
{
z ∈ C : |z| =

√
1+h
1−h

}
for any

h ∈ [−1, 1).

Definition 2.3. Let Ĉ := C ∪ {∞} denote the one-point compactification of C. It is
called the Riemann sphere.
This means that the open sets of Ĉ are the open sets of C and the sets of the form
U ∪ {∞} for U ⊂ C open (in C) with compact complement (in C).
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Lemma 2.4 (Topological Properties of the Riemann sphere). The Riemann sphere
Ĉ is Hausdorff, compact and second countable.
Furthermore, the inclusion C ↪→ Ĉ is an open embedding with dense image (i.e. C ⊂ Ĉ

is an open dense subset and its subspace topology is precisely the usual topology on C).

Proof. All of these properties are true more generally for the one-point compactification
of any locally-compact, Hausdorff and second countable space (for the last part, see here).

We extend π0 to a bijection

π : S2 → Ĉ, π|S2\{N} = π0, π(N) = ∞.

Lemma 2.5. Let (sn)n∈N ∈ S2 be a sequence and (zn)n∈N := π(sn) ∈ Ĉ its image. Then

sn → N ⇐⇒ |zn| → ∞ ∀ zn ̸= ∞ ⇐⇒ zn → ∞.

Proof. By Lemma 2.2, sn → N is equivalent to |zn| → ∞ for those n with zn ̸= ∞.
This in turn is equivalent to zn /∈ Bk(0) for all sufficiently large n and for all k ∈ N.
Since

{(
C \Bk(0)

)
∪ {∞} : k ∈ N

}
is a neighborhood basis of ∞ ∈ Ĉ, the assertion

follows.

By this lemma, π is continuous at N ∈ S2 and its inverse is continuous at ∞ ∈ Ĉ.
Because furthermore π restricts to a homeomorphism S2 \ {N} → C (by Lemma 2.2),
the Riemann sphere really is topologically a 2-sphere. We summarize this result.

Theorem 2.6. The map π : S2 → Ĉ defines a homeomorphism.

Figure 3: The left picture shows an open bounded set on the sphere (in green) and its
image under π (the orange disk) lying in Ĉ. The right picture shows the image of an
open set containing the north pole N ∈ S2 (in green) and its image under π (in orange).

https://math.stackexchange.com/questions/1701810/a-question-about-one-point-compactifications
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Equipping S2 ⊂ R3 with the usual Euclidean metric, this homeomorphism induces
the following metric on C:

χ(z, z′) := d(π−1(z), π−1(z′)).

The behavior of this metric can be computed explicitly with a lengthy calculation.

Theorem 2.7. The metric χ on Ĉ defined above is given by

χ : Ĉ× Ĉ→ R, (z, z′) 7→



2|z−z′|√
1+|z|2

√
1+|z′|2

z, z′ ∈ C
2√

1+|z|2
z ∈ C, z′ = ∞

2√
1+|z′|2

z = ∞, z′ ∈ C

0 z = z′ = ∞.

It is called the chordal metric.

Because the topology on the sphere is that induced by the Euclidean metric and π is
a homeomorphism, we obtain the following corollary.

Corollary 2.8. The topology on Ĉ is metrizable for it is induced by the chordal metric.
In particular, (Ĉ, χ) is a compact metric space and thus complete.
Equipping S2 with the Euclidean metric and Ĉ with the chordal metric makes π : S2 → Ĉ

into an isometric isomorphism.

2.2 Complex Analysis on the Riemann Sphere

Having introduced a metric on the Riemann sphere Ĉ, our next goal is to extend the
notion of holomorphic and meromorphic functions from C to Ĉ.

Definition 2.9. The inversion map on Ĉ is given by

J : Ĉ→ Ĉ, z 7→


0 z = ∞
∞ z = 0
1
z

otherwise

.

Clearly, J is an involution (and thus bijective). A lengthy calculation shows that

π−1 ◦ J ◦ π : S2 → S2

is linear and given by the matrix 1 0 0
0 −1 0
0 0 −1

 .

This means that if we identify S2 with Ĉ using the homeomorphism π, then the
inversion map J is a rotation by π around the x-axis.
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Figure 4: The action of the map J on the sphere S2 is a rotation by π around the ξ1-axis.

Corollary 2.10. The inversion map J : Ĉ→ Ĉ is a homeomorphism.

This allows us to characterize the continuity of functions at ∞ ∈ Ĉ.

Corollary 2.11. Let U ⊂ Ĉ be an open neighborhood of ∞ ∈ Ĉ and f : U → C a
function. f is continuous at ∞ ∈ Ĉ if and only if f ◦ J is continuous at 0 ∈ Ĉ (i.e.
f(∞) = limz→0(f ◦ J)(z)).

This observation inspires us to translate the notions holomorphy and meromorphy
from C to the Riemann sphere Ĉ.

Definition 2.12. Let U ⊂ Ĉ be open and f : U → C a function.
For ∞ ∈ U , f is called holomorphic (meromorphic) at ∞ if f ◦ J : J(U) → C is
holomorphic (meromorphic) at 0 ∈ J(U).
f is called holomorphic (meromorphic), if the restriction f |U∩C is holomorphic (mero-
morphic) and if furthermore f is holomorphic (meromorphic) at ∞ (assuming ∞ ∈ U) .
Other terminology like holomorphy at a point, pole, essential singularity, region
etc. is defined analogously.

In particular, a holomorphic function f : U → C with U ⊂ Ĉ is continuous, just like
for functions defined on C instead of Ĉ.
Note that a holomorphic function f : Ĉ → C is necessarily constant; for its image must
be compact and thus f |C must be constant by Theorem 1.14.

Because C is dense in Ĉ (Lemma 2.4), any function f : C → C has at most one
continuous extension Ĉ → C. By abuse of notation, it is common to define such a
function only on C. Then its value at ∞ ∈ Ĉ is chosen so that f becomes continuous;
that is, by Corollary 2.11 and Lemma 2.5, we set

f(∞) := lim
z→0

(f ◦ J)(z) = lim
z ̸=∞,|z|→∞

f(z),

assuming this limit exists.



2 The Riemann Sphere 10

Example 2.13. (a) For the function

f : Ĉ→ C, z 7→ 1

1 + z2
,

the map f ◦J(z) = z2

1+z2
is holomorphic at z = 0 and has a zero of order 2 at z = 0.

Therefore, f is holomorphic at z = ∞ and has a zero of order 2 at z = ∞.

(b) For the function (c ∈ C arbitrary)

f : Ĉ→ C, z 7→ z3,∞ 7→ c

the map f ◦ J(z) = 1
z3

is meromorphic at z = 0 with a pole of order 3. Thus, f is
meromorphic with a pole of order 3 at z = ∞.

(c) For the sine (c ∈ C arbitrary)

f : Ĉ→ C, z 7→ sin(z),∞ 7→ c

the composition f ◦ J(z) = sin(1
z
) has an essential singularity at z = 0, so f has an

essential singularity at z = 0 and thus is neither holomorphic nor meromorphic.

Lemma 2.14. Let U ⊂ Ĉ be open and f : U → C a function. f is holomorphic if and
only if f ◦ J : J−1(U) → C is holomorphic.

Proof. If ∞ ∈ U , then by definition, f is holomorphic at ∞ if and only if the composition
f ◦ J is holomorphic at 0 ∈ J−1(U). Furthermore, if 0 ∈ U , then since f ◦ J ◦ J = f , the
composition f ◦ J is holomorphic at ∞ ∈ J−1(U) if and only if f is holomorphic at 0.
Finally, the restriction of f ◦ J to

J−1(U) ∩ (C \ {0,∞}) =
{
z−1 : z ∈ U \ {0,∞}

}
is given by z 7→ f(z−1) and thus the assertion follows since C \ {0} → C \ {0}, z 7→ 1

z
is

biholomorphic.

We can now extend Theorem 1.12 to the Riemann sphere Ĉ.

Theorem 2.15 (Identity Theorem for the Riemann Sphere).
Let G ⊂ Ĉ be a region and f : G → C a holomorphic function. Let zn → z be a
nonconstant convergent sequence in G with z ∈ G. If f vanishes on all of {zn : n ∈ N},
then f = 0.

Proof. We first assume that z ̸= ∞. Then there exists N ∈ N, such that for all n ≥ N ,
zn ̸= ∞. Because Ĉ is homeomorphic to the sphere S2 (Theorem 2.6), G′ := G \ {∞} is
a region in C. Furthermore, since f ∈ O(G′) and f(zn) = 0 for all n ∈ N, f |G′ = 0 by
Theorem 1.12. If ∞ /∈ G, this shows the assertion. Otherwise, the continuity of f yields
f = 0.
We now consider the case z = ∞. Because zn is not constant, we may replace zn with a
nonconstant subsequence and assume that zn /∈ {0,∞} for all n ∈ N. By Lemma 2.14,
f ◦J : J−1(U) → C is holomorphic and the homeomorphism J (Corollary 2.10) translates
the nonconstant sequence zn → z to a nonconstant sequence J(zn) → J(z) = 0. Since
(f ◦J ◦J)(zn) = f(zn) = 0 for all n ∈ N, Theorem 1.12 implies that (f ◦ J)|J−1(U)∩C = 0,
so f |U\{0} = 0 and the continuity of f establishes the claim.
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We now consider functions whose codomain is the Riemann sphere Ĉ and extend the
notion of holomorphy and meromorphy for function Ĉ → C (see Definition 2.12) to the
more general case Ĉ → Ĉ. The Riemann sphere Ĉ is the “correct” codomain to define
meromorphy for functions. This is because for meromorphic mappings to ordinary C,
there is no natural value to map the poles to. Indeed in Definition 1.16, we allowed the
value of the poles to be arbitrary. In contrast, in the setting of Ĉ, we can now demand
that the preimage f−1(∞) should precisely be the set of poles.

Definition 2.16. Let U ⊂ Ĉ be open and f : U → Ĉ a function.
f is called holomorphic (as a map to C), if im(f) ⊂ C and f is holomorphic as a map
to C.
f is called meromorphic, if it is meromorphic as a function into C with its set of poles
equal to f−1(∞). The notions of holomorphy andmeromorphy at a point are defined
analogously.
A point z0 ∈ U \ {∞} is called a pole of order k ∈ N>0, if J ◦ f : V → C has a zero of
order k at z0, where V is a neighborhood of z0 satisfying V ⊂ f−1(Ĉ \ {0}) ∩ C.
If ∞ ∈ U , it is called a pole of order k ∈ N>0, if f ◦ J : J(U) → Ĉ has a pole of order
k at 0 ∈ J(U).
The set of all meromorphic function on U is denoted by

M(U) :=
{
f : U → Ĉ meromorphic

}
.

In particular, a point z0 ∈ U \{∞} is a pole of order k if and only if z 7→ (z−z0)kf(z)
can be holomorphically extended to z0 and is nonzero at z0.
In fact, this definition can be generalized to Riemann surfaces (though note that these
are generally assumed to be connected). C and Ĉ provide fundamental examples of
these complex manifolds, since the chart of C is just the identity idC and the charts of
the Riemann sphere Ĉ are idC and J |Ĉ\{0}. With this terminology, one can then define

holomorphy for functions S → C and meromorphy for functions S → Ĉ, where S is an
arbitrary Riemann surface (see here). There also exists a notion of holomorphy between
two Riemann surfaces f : S → T by demanding that the composition ψ ◦ f ◦ ϕ−1 with
charts ϕ and ψ is holomorphic. However, this definition is not equivalent to our definition
of holomorphy (as a map to C) above.

Clearly, any holomorphic (as a map to C) function is meromorphic and any meromor-
phic function is continuous.

Example 2.17. (a) A constant function that is not infinity is holomorphic and the
constant infinity function is not meromorphic.

(b) The identity idĈ is meromorphic with a pole of order 1 at ∞ ∈ Ĉ and the inversion

map J : Ĉ→ Ĉ is meromorphic with a pole of order 1 at 0 ∈ Ĉ.

Proposition 2.18. For an open set U ⊂ Ĉ the set of meromorphic functions M(U) with
pointwise addition and multiplication is a C-algebra. If U is even a region, then it is a
field.

Proof. To define f+g, f ·g and λ ·f for f, g ∈ M(G) and λ ∈ C, one first defines the new
function on the complement of the poles of f and g. This set is discrete since the union
of two discrete sets is discrete. Then the function is extended to all of G by extending it

https://terrytao.wordpress.com/2018/03/28/246c-notes-1-meromorphic-functions-on-riemann-surfaces-and-the-riemann-roch-theorem/
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holomorphically. It is then straightforward to verify that this indeed defines a C-algebra
structure.
To see that it is a field if U is a region, it suffices to note that the multiplicative inverse of
f ∈ M(G)\{0} is J◦f ∈ M(G) and it is seen to be meromorphic using Theorem 2.15.

If U is not connected, M(U) is not necessarily a field. For example, consider the union
of two balls U = B1(−2)∪B1(2) and set f |B1(−2) := 0, f |B1(2)

:= 1. The multiplicative in-
verse of this function would not be meromorphic, since it would be constant∞ on B1(−2).

Lec 3
2023-05-03We now study the solutions of equations on the Riemann sphere. More precisely, we

consider an equation of the form f(z0) = ζ for f : Ĉ → Ĉ a nonconstant function and
ζ ∈ Ĉ.
We first consider a solution z0 ∈ C. If f is holomorphic (as a map to C) at z0 (so ζ ̸= ∞),
then by Theorem 1.7 f is a local power series of the form

f(z) = ζ +
∞∑
j=k

f (j)(z0)

j!
(z − z0)

j,

where k ∈ N>0 is the smallest integer with f (k)(z0) ̸= 0.
If instead f is meromorphic at z0 with a pole of order k ∈ N>0 (so ζ = ∞), then by
definition J ◦f has a zero of order k at z0. In other words, we have J ◦f(z) = (z−z0)kg(z)
on a small enough punctured ball B := Br(z0) \ {z0} (with r > 0 chosen small enough
such that f attains neither 0 nor ∞ on B), where g is a holomorphic function that does
not vanish on Br(z0). Therefore, we may write f(z) = 1

(z−z0)k
1

g(z)
with holomorphic 1

g(z)

and thus f is locally equal to its Laurent series

f(z) =
∞∑

j=−k

aj(z − z0)
j

for some a−k ̸= 0.

Definition 2.19. If z0 ∈ Ĉ \ {∞} is a solution of f(z0) = ζ, then k as defined above is
its order (or multiplicity).
If z0 = ∞ ∈ Ĉ is a solution of f(z0) = ζ, then its order (or multiplicity) is the order
of f ◦ J(z) = ζ at z = 0.

By definition, the solutions of f(z) = ∞ of order k are precisely the poles of f of
order k. In particular, z0 = ∞ is a solution of f(z0) = ∞ of order k if and only if z = 0 is
a solution of f ◦ J(z) = ∞ of order k. By the above, this means that we have a Laurent
series f ◦ J(z) =

∑∞
j=−k bjz

j for small enough z ̸= 0, so plugging in J(z) yields for large
enough z ̸= ∞:

f(z) =
∞∑

j=−k

bj
1

zj
=

k∑
j=−∞

b−jz
j.

Definition 2.20. For z0 ∈ Ĉ, the principal part of f at z0 is the finite sum
∑−1

j=−k aj(z−
z0)

j if z0 ̸= ∞ and it is
∑k

j=1 b−jz
j otherwise (with aj, bj ∈ C constructed as above).

Thus in a neighborhood of z = 0, we have a series representation

f ◦ J(z) =
∞∑

j=−k

ajz
j
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with a−k ̸= 0. By replacing z with J(z), we obtain

f(z) =
k∑

j=−∞

a−jz
j

in a neighborhood of ∞. The principal part of f at ∞ is
∑k

j=1 a−jz
j.

Definition 2.21. z0 ∈ Ĉ is called a simple point of f at z0 if it is a solution of order
1 of f(z) = ζ with ζ := f(z0). Otherwise, it is called a multiple point.

Example 2.22. As an example, we investigate the order of the zeros and poles of the
function

f : Ĉ→ Ĉ, z 7→ z

1 + z3
.

Clearly, 0 is a simple zero. Because f ◦ J(z) = z2

z3+1
has a zero of order 2 at z = 0, the

point ∞ ∈ Ĉ is a zero of order 2 at f . This is what we would expect, since f “looks like”
z 7→ 1

z2
for large z ∈ C.

Let us now consider the poles of this function. f(z) = ∞ for z ∈ C means that z3 + 1 =
0; i.e. z ∈

{
−1, exp

(
iπ
3

)
, exp

(
−iπ

3

)}
are poles of order 1. ∞ is not a pole, because

J ◦ f ◦ J(z) = z3+1
z2

does not vanish at z = 0.

This example generalizes in a straightforward way.

Lemma 2.23. Consider the rational function

f : Ĉ→ Ĉ, z 7→ p(z)

q(z)
,

where p(z) =
∑n

j=0 ajz
j and q(z) =

∑m
j=0 bjz

j ̸= 0 are two polynomials (of degree n and
m, respectively) with coefficients aj, bj ∈ C and no common zeros.
Then f is meromorphic.
Furthermore, if f is not constant, its zeros and poles are characterized as follows:

(a) On C, the zeros of f of order k ∈ N>0 are precisely the zeros of p of order k.

(b) On C, the poles of f of order k ∈ N>0 are precisely the zeros of q of order k.

(c) ∞ ∈ Ĉ is a zero of f if and only if m > n, in which case its order is m− n.

(d) ∞ ∈ Ĉ is a pole of f if and only if n > m, in which case its order is n−m.

Proof. It is clear that f is meromorphic and (a) and (b) hold true. For (c), we note that
f → 0 for z → ∞ means that m > n and the order of this zero is m− n because

f ◦ J(z) =
∑n

j=0 ajz
−j∑m

j=0 bjz
−j

=

∑n
j=0 ajz

m−j∑m
j=0 bjz

m−j
= zm−n ·

∑n
j=0 an−jz

j∑m
j=0 bm−jzj

.

Since ∞ ∈ Ĉ is a pole of f of order k if and only if 0 is a zero of J ◦ f ◦ J of order k and
that is equivalent to J ◦ f = q

p
having a zero at ∞ of order k, (d) follows from (c).
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The rational functions form a field C(x), which extends C, because the function
mapping c ∈ C to the constant function with value c is a field homomorphism.

We now prove that the compactness of the Riemann sphere has the surprising conse-
quence that nonconstant meromorphic functions f : Ĉ→ Ĉ have finite preimages f−1(ζ)
for all ζ ∈ Ĉ. This stands in direct contrast to the complex plane, which e.g. allows
periodic functions like sin or exp.

Theorem 2.24. Let f ∈ M(Ĉ) be nonconstant. For ζ ∈ Ĉ, the equation f(z) = ζ has
only finitely many solutions.

Proof. Fix ζ ∈ Ĉ. We claim that for any z0 ∈ Ĉ, there exists a neighborhood U(z0) of
z0, such that f(z) ̸= ζ for all z ∈ U(z0) \ {z0}. Indeed, if f(z0) ̸= ζ, such a neighborhood
exists by continuity, so suppose that f(z0) = ζ. In case ζ = ∞, the poles of f are the
zeros of J ◦ f and if ζ ̸= ∞, the preimage f−1(ζ) is precisely the set of zeros of f − ζ.
Therefore, the desired neighborhood exists by Theorem 2.15.
Because Ĉ is compact, the cover Ĉ =

⋃
z0∈Ĉ U(z0) must have a finite subcover (with say

k elements), implying that the preimage f−1(ζ) has at most k elements.

Theorem 2.25. Let f, g ∈ M(Ĉ) be two meromorphic functions. If they have poles at
the same points and the same principal parts then they are equal up to constant in C;
that is, f − g = c for some constant c ∈ C.
This means that meromorphic functions on the Riemann sphere Ĉ are determined up to
additive constant by their principal parts.

Proof. The difference h := f − g is continuous and since Ĉ is compact, this implies that
the image im(h) is compact. Since all principal parts cancel, im(h) is a compact subset
of C, so in particular bounded. Therefore Theorem 1.14 implies that h must be constant
on C and by continuity, h is even constant on Ĉ.

Because holomorphic functions Ĉ → C (which we also called holomorphic functions
Ĉ→ Ĉ as a map to C) have no poles, we see that they must be constant.

Corollary 2.26. All holomorphic functions f : Ĉ→ C are constant.

The next result generalizes the fact that two complex polynomials in one variable hav-
ing the same zeros with the same multiplicities are equal up to a multiplicative constant.

Theorem 2.27. Let f, g ∈ M(Ĉ) and suppose that f and g have zeros and poles of the
same orders at the same points of C. Then f

g
is a constant in C; i.e. f = c · g for some

constant c ∈ C.

Proof. If f = 0 or g = 0 the statement is clear, so we may assume that f and g are
nonzero.
The function h := f

g
has a pole at ∞ if and only if J◦f◦J

J◦g◦J vanishes at 0. Since f and g are

meromorphic, we may write J ◦ f ◦ J(z) = zk · f̂(z) and J ◦ g ◦ J(z) = zl · ĝ(z) for small
z ̸= 0, where f̂ and ĝ are holomorphic functions that are nonzero for small z ̸= 0 and
k, l ∈ Z. By potentially interchanging f and g (i.e. considering the inverse g

f
instead of

h), we may assume that l ≥ k and then

J ◦ f ◦ J(z)
J ◦ g ◦ J(z)

= zk−l · f̂
ĝ
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does not vanish at 0, showing that h(∞) ∈ C. We now show that h(C) ⊂ C, which with
the above implies that im(h) ⊂ C.
If z0 ∈ C is a zero of f of order k, then f is of the form f(z) = (z − z0)

kf̂(z) on a small
punctured disk Br(z0) \ {z0} (with r > 0), where f̂ is a holomorphic function that is
nonzero on all of Br(z0). By assumption, g can similarly be written as g(z) = (z−z0)kĝ(z),
so their fraction h(z) = f(z)

g(z)
is holomorphic at z0. An analogous argument shows that h

is also holomorphic at all poles of f (or g).
We conclude (as in the proof before), that by compactness of the Riemann sphere im(h) ⊂
C must be bounded, which implies that h is constant by Theorem 1.14.

Note that in case f = 0, we have g = 0 and the fraction 0
0
is by convention understood

to be the constant 1 function.

We have observed in Lemma 2.23 that rational functions on the Riemann sphere Ĉ
are meromorphic. In fact, the opposite is true, too.

Theorem 2.28. The meromorphic functions M(Ĉ) are precisely the rational functions.

Proof. As mentioned, any rational function is meromorphic by Lemma 2.23.
On the other hand, let f ∈ M(Ĉ) \ {0} be a nonzero meromorphic function. Then its set
of zeros N and its set of poles P are both finite by Theorem 2.24. Let M(x) > 0 denote
the order of x ∈ N ∪ P . Then f and the rational function

r(z) :=

∏
n∈N(z − n)m(n)∏
p∈P (z − p)m(p)

share the same zeros and poles of the same orders at the points of C, so f = c · r for some
constant c ∈ C by Theorem 2.27; that is, f is a rational function.
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3 Elementary Transcendental Functions

3.1 Holomorphic Extensions

We briefly discuss when and how one can extend a function defined on an interval to a
holomorphic function on a region in C.

Definition 3.1. Let (a, b) ⊂ R be an open interval, G ⊂ C a region with (a, b) ⊂ G and
f : (a, b) → R a function. If F : G → C is holomorphic with F |(a,b) = f , then F is called
the holomorphic extension of f .

Note that by Theorem 1.12, the holomorphic extension of f on a given region G is, if
existent, unique. There are also other notions of holomorphic extension in usage.

Theorem 3.2. A function f : (a, b) → R has a holomorphic extension if and only if f is
real analytic; i.e. if for all x0 ∈ (a, b), there exists r(x0) > 0 and coefficients aj ∈ R such
that f(x) =

∑∞
j=0 aj(x− x0)

j for all x ∈ (x0 − r, x0 + r).

Proof. If there exists a holomorphic extension F of f , then F has a power series expansion

(in C) and the coefficients aj =
1
j!
F (j)(z)

∣∣∣
z=x0

lie in R.

On the other hand, suppose that f is analytic (on R) and let x0 ∈ (a, b). By definition,
there exists r(x0) > 0 and coefficients aj(x0) ∈ R (both dependent on x0), such that
f(x) =

∑∞
j=0 aj(x0)(x − x0)

j for all x ∈ (x0 − r, x0 + r). Because this power series
converges on all of Br(x0)(x0), the holomorphic function

Fx0 : Br(x0)(x0) → C, z 7→
∞∑
j=0

aj(x0)(z − x0)
j

agrees with f on I(x0) := (x0 − r(x0), x0 + r(x0)).
It remains to show that for x0, x1 ∈ (a, b) with x0 < x1, the coefficients aj(x0) and aj(x1)
agree for all j ∈ N, since then the collection {Fx0 : x0 ∈ (a, b)} gives rise to a holomorphic
extension F of f on the region

⋃
x∈(a,b)Br(x)(x).

Indeed, because the interval [x0, x1] ⊂ R is compact, the cover
⋃

x∈[x0,x1]
I(x) admits

a finite subcover
⋃k

u=1 I(yu) for some yu ∈ (a, b) with I(yu) ̸⊂ I(yv) for u ̸= v and
y1 < y2 < · · · < yk. For u ∈ {1, . . . , k − 1}, it follows that I(yu) ∩ I(yu+1) is a nonempty
interval on which Fyu and Fyu+1 agree. By Theorem 1.12, they even agree on the open
set Br(yu)(yu) ∩ Br(yu+1)(yu+1) ⊂ C, implying that aj(yu) = aj(yu+1) for all j ∈ N. Since
this applies to every u ∈ {1, . . . , k − 1}, we have aj(y1) = aj(yk) and by again applying
Theorem 1.12, we see that aj(y1) = aj(x0) and aj(yk) = aj(x1), so aj(x0) = aj(x1) for all
j ∈ N, as desired.

Lec 4
2023-05-10Example 3.3. The exponential function

exp: C→ C, z 7→
∞∑
k=0

zk

k!

is the holomorphic extension of the real analytic function exp: R → R. Here we used
that the radius of convergence of this power series is infinite. Similarly,

cos(z) :=
∞∑
k=0

(−1)k
z2k

(2k)!
, sin(z) :=

∞∑
k=0

(−1)k
z2k+1

(2k + 1)!



3 Elementary Transcendental Functions 17

are the extensions of the real analytic functions cosine and sine, respectively.
The hyperbolic cosine and hyperbolic sine are given by

cosh(z) =
1

2
(exp(z) + exp(−z)), sinh(z) =

1

2
(exp(z)− exp(−z)).

and satisfy
cosh(z) = cos(iz), sinh(z) = −i sin(iz).

Figure 5: The x-coordinate of a fixed point on the parabola x2 − y2 = 1 (in blue) is
cosh(α) (in green). Similarly, its y-coordinate is sinh(α) (in purple). This is analogous to
the characterization of sine and cosine on the unit circle and explains why the functions
are called hyperbolic.

The identity theorem (Theorem 1.12) gives rise to principle of permanence, which al-
lows us to transfer many identities that we know are true on R to a corresponding identity
for the holomorphic extension on C. It is demonstrated by the following proposition.

Proposition 3.4. The exponential function exp: C → C× is a group homomorphism;
i.e. exp(z + z′) = exp(z) · exp(z′) for all z, z′ ∈ C.

Proof. For fixed z′ ∈ R, the functions C→ C

z 7→ exp(z + z′), z 7→ exp(z) · exp(z′)

are holomorphic and agree on R ⊂ C, so by Theorem 1.12, they agree on all of C. Fixing
z ∈ R instead and applying the same argument yields the claim.

For z = x+ iy ∈ C (with x, y ∈ R), we have

exp(z) = exp(x) · exp(iy) = exp(x) · (cos(y) + i sin(y)). (1)
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3.2 Periodic Functions

To express the periodicity of the exponential function, we characterize periodicity of
functions in much generality.

Definition 3.5. Let G be an abelian group and T an arbitrary set. A function f : G→ T
is called periodic with period a ∈ G \ {0}, if it is invariant under the action of a; i.e.
if we have f(z) = f(z + a) for all z ∈ G.
The set of periods (together with 0 ∈ G)

P := {a ∈ G : f periodic with period a} ∪ {0} ⊂ G

is a group. If it is cyclic with generator a ∈ G, then f simply periodic with primitive
period a.

Example 3.6.

(a) The group of periods of the Dirichlet function 1Q : R→ R is Q, so it is not simply
periodic.

(b) Sine and cosine (as functions C → C) are simply periodic with primitive period
2π (or −2π), because their restrictions to the real line have this property and the
periodicity extends by Theorem 1.12 as the holomorphic functions z 7→ sin(z) and
z 7→ sin(z + 2π) agree on R.

(c) The exponential function exp: C → C is periodic with primitive period 2πi (or
−2πi), because

exp(z) = exp(z + a) = exp(z) · exp(a) ∀ z ∈ C

is equivalent to exp(a) = 1; i.e. to a ∈ 2πiZ.

By definition, a periodic function f : G → T with group of periods P descends to a
function G/P → T ; i.e. it factors uniquely through the canonical projection π : G →
G/P :

G T

G/P

f

π

Moreover, if all groups are topological groups and f is continuous, the induced map is
also continuous.

This means that a continuous periodic function f : G→ T can equally well be viewed
as a function G/P → T . For example, sin : R→ R and cos : R→ R are continuous on the
topological group R (with ordinary addition) and thus descend to functions R/2πZ→ R

and it can be shown that R/2πZ is homeomorphic to the circle S1. In this sense, sine
and cosine are really defined “on the circle”, which is why the trigonometric functions
are also called circular functions. This point of view is sometimes very convenient, for
instance in Fourier analysis.
Similarly, the exponential function can be thought of as being defined on the (infinite)
cylinder R× S1.

Definition 3.7. The quotient group G/P is called the period quotient group of G.
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3.3 The Complex Logarithm

Geometrically, the argument arg(z) of a complex number z ∈ Z is the angle between the
real axis and the point z (when connected to the origin). In particular, it is clear that it
is only unique in R/2πZ.

Definition 3.8. The set-valued argument function is

arg : C× → P(R), z 7→
{
r ∈ R :

z

|z|
= exp(ir)

}
= Arg(z) + 2πZ,

where Arg : C× → R is the function choosing the unique representative in (−π, π]. Arg
is called the principal value of arg.

Note that Arg (and arg as well) is really a function from the unit sphere S1, since it
factors as

C× S1 R.
z 7→ z

|z| Arg

Proposition 3.9. The principal value of arg is given by

Arg : C× → R, x+ iy 7→



arctan
(
y
x

)
x > 0

arctan
(
y
x

)
+ π x < 0, y ≥ 0

arctan
(
y
x

)
− π x < 0, y < 0

π
2

x = 0, y > 0

−π
2

x = 0, y < 0

.

It is not continuous at any point on the negative real axis (−∞, 0) ⊂ C×, but it is totally
differentiable on

C− := C× \ (−∞, 0) = C \ (−∞, 0]

with
∂x Arg(x, y) = − y

x2 + y2
, ∂y Arg(x, y) =

x

x2 + y2
.

Proof. The formula for Arg follow from elementary geometry on the unit circle.
Furthermore, it is clear that Arg is not continuous at x ∈ R ⊂ C with x < 0 as

lim
y→0,y>0

Arg(x+ iy) = lim
y→0,y>0

arctan
(y
x

)
+ π = π ̸= −π = lim

y→0,y<0
Arg(x+ iy).

The claimed derivatives are easily confirmed on the open subsets {x+ iy : x > 0, y ∈ R},
{x+ iy : x < 0, y > 0} and {x+ iy : x < 0, y < 0} using that ∂ arctan(t) = 1

1+t2
. Finally,

on {iy : y > 0} and {iy : y < 0}, using the definition of the derivative and L’Hôpital’s
rule yields the claim.

By (1), we have for z = x+ iy ∈ C (x, y ∈ R):

|exp(z)| = exp(x), arg(exp(z)) = y + 2πZ, exp(z) = exp(z̄).

Because the exponential function exp: C → C× is periodic and thus in particular
not injective, there exists no global left-inverse. However, since it is surjective, a right-
inverse (not necessarily holomorphic) must exist (just like for sine and cosine). In order to
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compute such a right-inverse l, we use polar coordinates to write z = |z| exp(iArg(z)) ∈
C×, and note that by uniqueness of this representation, the equation

z = exp(l(z)) = exp(ℜ(l(z))) · exp(iℑ(l(z)))

is equivalent to
l(z) = log |z|+ i · (Arg(z) + 2πk(z)),

where k : C× → Z can be chosen arbitrarily. In order for such a right-inverse to be
continuous on C−, k must be continuous and thus constant, because the subspace topology
Z ⊂ C is the discrete one. Therefore, the continuous right-inverses of exp: C → C− are
precisely

l : C− → C, z 7→ log(|z|) + i · (Arg(z) + 2πk)

for arbitrary k ∈ Z.
Furthermore, since Arg is not continuous on all of C× but the other functions occuring
in l are, there exists no continuous right-inverse of exp: C→ C×.

Definition 3.10. For k ∈ Z, the function

logk : C
× → C, z 7→ log(|z|) + iArg(z) + 2πik

is called the k-th branch of the logarithm and is often abbreviated by log. The case
k = 0

Log : C× → C, z 7→ log(|z|) + iArg(z)

is called the principal (or main) branch of the logarithm.

By verifying the Cauchy-Riemann equations (using Proposition 3.9) all branches of
log are seen to be holomorphic on C−. By the above, they cannot holomorphically be
extended to all of C×.

Proposition 3.11. Every branch of log is holomorphic on C−.

For k ∈ Z, the periodic strips

Sk := {x+ iy : x ∈ R, y ∈ (−π + 2πk, π + 2πk]}

cover C and each of them provides a choice of representatives of the period quotient group
C/(2πiZ) of exp. In particular, all strips Sk have the same image, namely C×.

Figure 6: The strip S0 and the image of various shapes under the exponential exp.
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The “dual” rule to Proposition 3.4, does not generally hold true for the logarithm
in the complex plane. This subtlety essentially stems from the discontinuity of log at
(−∞, 0) (which in turn arises from the discontinuity of Arg).

Lemma 3.12. For a, b ∈ C×, we have

Log(a · b) =


Log(a) + Log(b) Arg(a) + Arg(b) ∈ (−π, π]
Log(a) + Log(b)− 2πi Arg(a) + Arg(b) > π

Log(a) + Log(b) + 2πi Arg(a) + Arg(b) ≤ −π.

Proof. Writing out the definition with a, b in polar coordinates and using that the rule is
true on R+, we immediately see that

Log(a · b) = Log(a) + Log(b) ⇐⇒ Arg(a · b) = Arg(a) + Arg(b).

We noted above that Arg (and thus all branches of log) are discontinuous at all points
in (−∞, 0) ⊂ C and that no global continuous right-inverse can exist. Indeed, the k-th
branch of the log satisfies

lim
z→z0,ℑ(z)>0

logk(z) = log(|z|) + (π + 2πk)i, lim
z→z0,ℑ(z)<0

logk(z) = log(|z|) + (−π + 2πk)i

for all z0 ∈ (−∞, 0). For arbitrary k ∈ Z, these limits agree locally if we use the k-
th branch when ℑ(z) ≥ 0 and the (k + 1)-st branch otherwise. This idea leads to the
Riemann surface of log, see wikipedia. Lec 5
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3.4 Complex Roots

For n ∈ N, n > 1, we consider the n-th monomial m : C× → C×, z 7→ zn. The preimage
m−1(1) (i.e. the roots of z 7→ zn − 1) consists precisely of the n roots of unity (and form
a cyclic group)

m−1(1) =

{
exp

(
2π
k

n
i

)
: k ∈ {0, . . . , n− 1}

}
.

The preimage of c ∈ S1 with polar coordinates c = exp(iArg(c)) is given by

m−1(c) = m−1(1) · exp
(
Arg(c)

n
i

)
=

{
exp

(
2πk +Arg(c)

n
i

)
: k ∈ {0, . . . , n− 1}

}
.

More generally, by writing c ∈ C× in polar coordinates c = |c| exp(iArg(c)), it follows
that

m−1(c) = n
√

|c| ·m−1

(
c

|c|

)
=

{
n
√
|c| · exp

(
2πk +Arg(c)

n
i

)
: k ∈ {0, . . . , n− 1}

}
=

{
exp

(
1

n
logk(c)

)
: k ∈ {0, . . . , n− 1}

}
.

Therefore, (just like exp: C → C×) m admits no left-inverse, and any right-inverse
l : C× → C× is of the form l(z) = exp

(
1
n
logk(z)(z)

)
for some function k : C× → Z.

Restricting l to C−, all functions occuring in its definition are continuous and thus
l : C− → C× is continuous if and only if

C− → C×, z 7→ n
√

|z| · exp
(
2π
k(z)

n
i

)
· exp

(
Arg(z)

n
i

)
is continuous; i.e. if and only if k is constant (because again the subspace topology Z ⊂ C
is the discrete one).

https://en.wikipedia.org/wiki/Complex_logarithm#The_associated_Riemann_surface
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Definition 3.13. For n ∈ N>0 and k ∈ Z, the function

n
√
·k : C× → C×, z 7→ exp

(
1

n
logk(z)

)
= n
√
|z| · exp

(
2πk +Arg(z)

n
i

)
is called the k-th branch of the n-th root and is often abbreviated by n

√
·.

Note that n
√
·k = n

√
·l if and only if k ≡ l mod n. In particular, there are precisely

n (distinct) branches of the n-th root. Because logk is holomorphic on C− (Proposi-
tion 3.11), the same holds true for n

√
·k.

Proposition 3.14. Every branch of the n-th root is holomorphic on C−.

As before, we observe that for z0 ∈ (−∞, 0):

lim
z→z0,ℑ(z)>0

n
√
zk = lim

z→z0,ℑ(z)<0

n
√
z(k+1 mod n),

Using this observation, one can construct the Riemann surface of n
√
·, see wikipedia.

https://en.wikipedia.org/wiki/Riemann_surface#Examples
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4 Homology in the Complex Plane

In this section, we highlight homology in the complex plane and state a version of Cauchy’s
Integral theorem for differentiable 1-forms. This requires quite a lot of terminology. Many
of the definitions we give can be generalized to arbitrary manifolds.

Throughout this section, U ⊂ C denotes an open subset and for k ∈ N ∪ {∞}, we
write Ck(U,C) for the C-algebra of k-times continuously differentiable functions U → C.

4.1 The Cotangent Space

Definition 4.1. Let U ⊂ C be open and a ∈ U . Consider the ideal

Ia := {f ∈ C∞(U,C) : f(a) = 0} ⊂ C∞(U,C).

The quotient vector space T ∗
a (U) := Ia/I

2
a is called the cotangent space of U at a.

In particular, the cotangent space T ∗
a (U) is a C

∞(U,C)-module (with pointwise multi-
plication). Also note that Ia is the kernel of the evaluation homomorphism eva : C

∞(U,C) →
C.

Lemma 4.2. We have

Ia = (x 7→ ℜ(x− a), x 7→ ℑ(x− a))

and thus in particular

I2a = {f ∈ C∞(U,C) : f(a) = 0, Df(a) = 0}.

Proof. It is clear that the two generators are contained in Ia. For the other inclusion, let
f : U → C ∼= R2 be a smooth function and consider a ball Bϵ(a) ⊂ U . For x ∈ Bϵ(a), we
have

∂tf(a+ t(x− a)) = Df(a+ t(x− a)) · (x− a) ∈ R2

and thus by the fundamental theorem of calculus

f(x) = f(a) +

∫ 1

0

∂tf(a+ t(x− a))dt = f(a) +

∫ 1

0

Df(a+ t(x− a)) · (x− a)dt

= f(a) + (x1 − a1)

∫ 1

0

∂x1f(a+ t(x− a))dt+ (x2 − a2)

∫ 1

0

∂x2f(a+ t(x− a))dt.

Therefore, if f ∈ Ia, then the smooth functions Bϵ(a) → C

g1(x) :=

∫ 1

0

∂x1f(a+ t(x− a))dt, g2(x) :=

∫ 1

0

∂x2f(a+ t(x− a))dt

satisfy
f |Bϵ(a)

= ℜ(x− a) · g1 + ℑ(x− a) · g2.
By choosing a bump function ψ : U → R that is 1 on Bδ(a) ⊂ Bϵ(a) for some δ ∈ (0, ϵ)
and 0 on the complement of Bϵ(a), it follows that

f = ψ · (ℜ(x− a) · g1 + ℑ(x− a) · g2) + (1− ψ) · f ∈ Ia.

Finally, the description of I2a follows by noting that it is generated by{
x 7→ (ℜ(x− a))2, x 7→ (ℑ(x− a))2, x 7→ ℜ(x− a) · ℑ(x− a)

}
and by using the product rule on a general element of I2a .
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This result generalizes in a straightforward way to general manifolds, see here.
As a consequence, I2a consists of precisely those functions whose Taylor polynomial of

first order vanishes. Therefore, the cotangent space of U at a ∈ U can be thought of as
the set of all “first order behaviors” at a; two functions f, g ∈ Ia are equal in T ∗

a (U) if
and only if their first order behaviors agree.

In particular, every smooth function f : U → C ∼= R2 has a “first order behavior”,
giving a map C∞(U,C) → T ∗

a (U). However, to ensure that f ∈ Ia, we must consider
f − f(a) instead of f .

Definition 4.3. For U ⊂ C open and f ∈ C∞(U,C), its differential at a ∈ U is

daf := (f − f(a)) mod I2a ∈ T ∗
a (U),

giving a map

da : C
∞(U,C) Ia T ∗

a (U),
·−f(a) mod I2a

which is just the canonical projection Ia ↠ Ia/I
2
a on Ia.

By Taylor’s theorem, f ∈ C∞(U,C) can be written as

f(x) = f(a) +Df(a) · (x− a) +O((x− a)2) (x→ a). (2)

The next lemma shows that the rest term O((x− a)2) is in I2a , so that the differential of
f is just the “best linear approximation” of f ; i.e. the function x 7→ Df(a) · (x− a). In
the theorem after that, this observation is then shown to be a C-linear isomorphism.

Lemma 4.4. We have

C∞(U,C) ∩ O
(
(x− a)2

)
=

{
f ∈ C∞(U,C) : lim

x→a

f(x)

|x− a|2
exists

}
⊂ I2a (x→ a).

Proof. Because limx→a
f(x)

|x−a|2 = limh→0
f(a+h)

|h|2 whenever one of those limits exists, this

follows for f ∈ C∞(U,C) (using Lemma 4.2) by observing that

f(a) = lim
h→0

f(a+ h)

|h|2
· |h|2, lim

h→0

f(a+ h)

|h|
= lim

h→0

f(a+ h)

|h|2
· |h|.

Since Taylor’s theorem (2) remains true for f ∈ C1(U,C), much of the theory easily
generalizes to C1(U,C) instead of C∞(U,C). Lec 6
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Theorem 4.5. For U ⊂ C open, the total derivative D induces a C-linear isomorphism

D : T ∗
a (U) → HomR(C,C), f 7→ Df(a).

Here HomR(C,C) denotes the C-vector space of R-linear maps C→ C.

Proof. Consider the R-linear surjective map

ψ : Ia → HomR(C,C), f 7→ Df(a).

To see that it is also C-linear, it suffices to show that ψ(i · f) = i · ψ(f) for all f ∈ Ia,
because {1, i} is a R-basis of C:

ψ(i · f) = D

(
−f2
f1

)
(a) = D

((
0 −1
1 0

)
· f
)
(a) =

(
0 −1
1 0

)
·Df(a) = i · ψ(f).

Because ker(ψ) = I2a by Lemma 4.2, the assertion follows.

https://math.stackexchange.com/questions/411339/ideal-of-smooth-function-on-a-manifold-vanishing-at-a-point
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Since this isomorphism is in particular R-linear and C can be thought of as the tangent
space Ta(U) at a, this shows that the cotangent space T ∗

a (U) can also be viewed as the
dual space (over C) of the tangent space Ta(U) (thus the notation). In fact, this result
holds true for arbitrary manifolds, see here.

Definition 4.6. The Wirtinger operators (or Wirtinger derivatives) are the linear
operators C1(U,C) → C0(U,C)

∂z :=
1

2
(∂x − i∂y), ∂z̄ :=

1

2
(∂x + i∂y).

Here ∂x denotes the derivative operator w.r.t. the first component (when viewing C as
R2) and ∂y denotes the derivative operator w.r.t. the second component.

By the Cauchy-Riemann equations, the kernel of ∂z̄ are precisely the holomorphic
functions ker(∂z̄) = O(U). Additionally, because ∂x(f) = f ′ (where f ′ denotes the
complex derivative) and ∂yf = i · f ′ for any holomorphic function f ∈ O(U), it follows
that ∂z(f) = f ′.

Theorem 4.7. For an open subset U ⊂ C and a ∈ U , {da(ℜ), da(ℑ)} is a basis of T ∗
a (U).

We also denote da(ℜ) by dax and da(ℑ) by day, since it is common to write z = x + iy
with x = ℜ(z), y = ℑ(z).
The basis representation of daf for f ∈ C∞(U,C) (in particular for f ∈ T ∗

a (U) since then
daf = f) is (where ∂xf(a), ∂yf(a) ∈ C)

daf = ∂xf(a) · dax+ ∂yf(a) · day.

Similarly, {daidU , da·} (the differential of the identity and complex conjugation; also
written as daz and daz̄) is a basis of T ∗

a and

daf = ∂zf(a) · daz + ∂z̄f(a) · daz̄.

Proof. This can be proven directly (using (2) for the representation of daf), but it is
quicker to deduce it using the isomorphism from Theorem 4.5.
Because dax corresponds to the map R2 → R2, (x, y) 7→ (x − ℜ(a), 0) (and similarly for
day), we have

D(dax) =

(
1 0
0 0

)
, D(day) =

(
0 1
0 0

)
, i ·D(dax) =

(
0 0
1 0

)
, i ·D(day) =

(
0 0
0 1

)
,

where we used that multiplication by i corresponds to left multiplication with the matrix
representing a 90 degree anticlockwise rotation. Therefore, D(dax) and D(day) form a
C-basis of HomR(C,C) and since D : T ∗

a (U) → HomR(C,C) is a C-linear isomorphism,
dax and day must be a basis of T ∗

a (U). Because the total derivative of f is the same as
that of its differential daf the first representation of daf follows.
Similarly, we calculate

D(daz) =

(
1 0
0 1

)
, D(daz̄) =

(
1 0
0 −1

)
, i ·D(daz) =

(
0 −1
1 0

)
, i ·D(daz̄) =

(
0 1
1 0

)
and solving the linear equation Df = (a + ib) · D(daz) + (c + id) · D(daz̄) yields the
assertion.

https://art-math.github.io/files/tangentspace.pdf
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Definition 4.8. The cotangent bundle of an open set U ⊂ C is T ∗U =
∐

a∈U T
∗
aU .

This set can be given a topology and a smooth structure that makes it into a manifold.
With this, the canonical projection π : T ∗U → U, (a, t) 7→ a can be shown to be smooth
(in particular continuous). However, we will skip this technical step.
In fact, the cotangent bundle of an arbitrary smooth manifold can be defined and endowed
the structure of a smooth manifold.

4.2 Differential Forms

Definition 4.9. A differential form of order 0 (or differential 0-form) is a smooth
function U → C.
A smooth function σ : U → T ∗U that is right-inverse to the canonical projection π : T ∗U →
U is called a differential form of order 1. The set of differential forms of order k is
denoted by Ωk(U).

Explicitly, a differential form of order 1 is a smooth function σ : U → T ∗U such that
σ(a) ∈ T ∗

a (U) for all a ∈ U . Note that Ω1(U) is a C∞(U,C)-module and in particular a
C-vector space (with pointwise addition and multiplication).

Example 4.10. Any f ∈ C∞(U,C) induces a differential form of order 1 by its differential

df : U → T ∗(U), a 7→ daf.

In particular, we have the differential 1-forms dx, dy, dz and dz̄.

From the definition of these differential 1-forms and the fact that da : C
∞(U,C) →

T ∗
a (U) is C-linear, we have

dz = dx+ idy, dz̄ = dx− idy, dx =
dz + dz̄

2
, dy =

dz̄ − dz

2
i. (3)

We can now reinterpret Theorem 4.7.

Theorem 4.11 (Bases of 1-forms).
As a module over C∞(U,C), the differential 1-forms Ω1(U) are two dimensional with one
basis given by {dx, dy} and another one given by {dz, dz̄}.
Explicitly, any differential 1-form ω can be written as

ω = ∂x · dx+ ∂y · dy = ∂z · dz + ∂z̄ · dz̄.

Any 1-form ω : U → T ∗(U) is thus of the form

ω(a) = ∂x(ω(a))(a)·dax+∂y(ω(a))(a)·day = ∂z(ω(a))(a)·daz+∂z̄(ω(a))(a)·daz̄ ∀ a ∈ U.

Definition 4.12. Let V be a vector space over a field K. The second exterior power
is the quotient vector space

Λ2V = (V ⊗ V )/⟨v ⊗ v : v ∈ V ⟩.

The second exterior power is actually a subspace of the exterior algebra (or Grassman
algebra), see wikipedia.

The tensor product ⊗ : V → V → Λ2V in this context is also called the exterior
product and has some important properties, which we now specify without proof. We
will make use of these properties instead of the explicit definiton.

https://en.wikipedia.org/wiki/Exterior_algebra
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Lemma 4.13. Let V be a vector space over an arbitrary field. There exists an operation

∧ : V × V → Λ2V,

called the exterior product having the following two properties (for v1, v2, v3 ∈ V ,
λ ∈ C):

(a) bilinear :

(v1 + v2) ∧ v3 = v1 ∧ v3 + v2 ∧ v3, (λv1) ∧ v2 = λ · v1 ∧ v2

and the linerity in the second argument follows with the second property;

(b) anticommutative: v1 ∧ v2 = −v2 ∧ v1.

Furthermore, if V is finite dimensional with basis {e1, . . . , en}, then Λ2V has the basis
{ei ∧ ej : i < j, i, j ∈ {1, . . . , n}} and thus has dimension

(
n
2

)
.

Applying this construction to the cotangent space T ∗
a (U) of U at a gives rise to the

differential 2-forms. In the following definition, we will again omit specifying the smooth
structure on the disjoint union.

Definition 4.14. Let U ⊂ C be open. A differential form of order 2 on U is a smooth
function

ω : U →
∐
a∈U

Λ2(T ∗
a (U))

that is right-inverse to the canonical projection π :
∐

a∈U Λ2(T ∗
a (U)) → U (i.e. it satisfies

ω(a) ∈ Λ2(T ∗
a (U)) for all a ∈ U).

We saw in Theorem 4.7 that each cotangent space T ∗
a (U) has the C-bases {dax, day}

and {daz, daz̄}. By Lemma 4.13, this implies that Λ2(T ∗
a (U)) has the two C-bases

{dax ∧ day} and {daz ∧ daz̄}. Therefore, any differential 2-form ω : U →
∐

a∈U Λ2(T ∗
a (U))

can be written as ω = f · dx∧ dy and ω = h · dz ∧ dz̄ with unique functions f, h : U → C,
which can be shown to be smooth. We summarize this result.

Theorem 4.15 (Bases of 2-forms).
Let U ⊂ C be open. As a module over C∞(U,C), the differential 2-forms Ω2(U) are one
dimensional with one basis given by {dx ∧ dy} and another one by {dz ∧ dz̄}. Thus any
differential 2-form ω can be written uniquely as

ω = f · dz ∧ dz̄ = h · dx ∧ dy,

where f, h ∈ C∞(U,C).

Definition 4.16. For U ⊂ C open and k ∈ N, the linear map

d : Ω1(U) → Ω2(U), f · dz + g · dz̄ 7→ df ∧ dz + dg ∧ dz̄

is called the exterior derivative.
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With the formulas

df = ∂zf · dz + ∂z̄f · dz̄, dg = ∂zg · dz + ∂z̄g · dz̄

from Theorem 4.11, the exterior derivative is equivalently given by

d(f · dz + g · dz̄) = (∂zg − ∂z̄f) · dz ∧ dz̄. (4)

It is similarly straightforward to plug in (3) and obtain the equivalent definition

d(f · dx+ g · dy) = (∂xg − ∂yf)dx ∧ dy.
Lec 7
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∂z̄(ω(a))(a)·daz̄ (for a ∈ U) and we also have Ω1(U) = ⟨dz⟩⊕⟨dz̄⟩ (as C∞(U,C)-modules).
The observation ker(∂z̄) = O(U) (by the Cauchy-Riemann equations) thus inspires the
following definition.

Definition 4.17. A 1-form ω ∈ Ω1(U) is called holomorphic, if ω = f · dz with
f ∈ O(U). It is called closed, if dω = 0.
The R-vector space of all closed 1-forms on U is denoted by Z1(U). It is the kernel of
the linear map d : Ω1(U) → Ω2(U).

Proposition 4.18. Let U ⊂ C be open. A 1-form ω = f ·dz ∈ Ω1(U) with f ∈ C∞(U,C)
is closed if and only if it is holomorphic.

Proof. This follows immediately from (4) as dω = −∂z̄f ·dz∧dz̄ and ker(∂z̄) = O(U).

We now briefly introduce 0-chains and 1-chains, which originally come from singular
homology, a tool used in algebraic topology to characterize how many holes a topological
space has.

Definition 4.19. Let U ⊂ C be an open set. The free abelian group C1(U) generated
by the set

X := {γ : [0, 1] → U continuously differentiable curve}
is called the group of 1-chains. The subgroup generated by the closed curves in X (i.e.
γ ∈ X with γ(0) = γ(1)) is called the group of 1-cycles and is denoted by Z1(U). The
free abelian group C0(U) generated by U is called the group of 0-chains.

Explicitly, an element of the group of 1-chains can be written as γ =
∑k

j=1 αjγj for
αj ∈ Z and γj ∈ X.

4.3 The Cauchy Integral Theorem for differential 1-Forms

In general manifold theory, differential n-forms serve as the “objects” that can be inte-
grated over. For us, it suffices to integrate over 1-forms.

Definition 4.20. Let U ⊂ C be open, ω ∈ Ω1(U) a 1-form and γ : [0, 1] → C a con-
tinuously differentiable path. The integral of ω = f · dx + g · dy over γ is defined to
be ∫

γ

ω :=

∫ 1

0

(f ◦ γ)(t) · (ℜ ◦ γ)′(t)dt+
∫ 1

0

(g ◦ γ)(t) · (ℑ ◦ γ)′(t)dt ∈ C.

If γ =
∑k

j=1 αjγj ∈ C1(U) is instead a 1-chain, then we set∫
γ

ω :=
k∑

j=1

αj

∫
γj

ω.
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Let us first notice that for holomorphic 1-forms, this generalizes the complex path
integral in the following sense.

Lemma 4.21 (Integral of 1-forms generalizes complex path integral).
For U ⊂ C be open, ω = fdz ∈ Ω1(U) a holomorphic 1-form and γ ∈ C1(U) a 1-chain,
we have

∫
γ
ω =

∫
γ
fdz.

Proof. It suffices to prove this for a continuously differentiable path γ : [0, 1] → U and
indeed, using the fact that dz = dx+ i · dy, we calculate∫

γ

ω =

∫ 1

0

(f ◦ γ)(t) · (ℜ ◦ γ)′(t)dt+
∫ 1

0

(f ◦ γ)(t) · i(ℑ ◦ γ)′(t)dt

=

∫ 1

0

(f ◦ γ)(t) · γ′(t)dt =
∫
γ

fdz.

This integral operator depends on ω and γ, we can thus view it as a function∫
: C1(U)× Ω1(U) → R, (γ, ω) 7→

∫
γ

ω,

which is a group homomorphism (Z-linear) in the first component and R-linear in its
second component. We restrict this function to Z1(U)×Z1(U), where Z1(U) is the group
of 1-cycles and Z1(U) is the R-vector space of closed 1-forms.
Note that we may equivalently view this function as a group homomorphism

Z1(U) →
{
Z1(U) → R linear

}
.

Definition 4.22. Let U ⊂ C be an open set and consider the kernel of the previous
group homomorphism

B1(U) :=

{
γ ∈ Z1(U) :

∫
γ

ω = 0 ∀ω ∈ Ω1(U) closed

}
⊂ Z1(U),

whose elements are called null homologous.
The quotient group H1(U) := Z1(U)/B1(U) is called the first homology group of U .
Two cycles γ, γ′ ∈ Z1 are called homologous relative to U , if they are equal in H1(U);
i.e. if

∫
γ
ω =

∫
γ′ ω for all closed ω ∈ Ω1(U,C).

By instead viewing the integral operator as a R-linear map

Ω1(U) → {Z1(U) → R group homomorphism},

we obtain the following “dual” definition.

Definition 4.23. For U ⊂ C open, a 1-form ω ∈ Ω1(U) is called null cohomologous,
if it is in the kernel of the previous R-linear map; that is, if

∫
γ
ω = 0 for all 1-cycles

γ ∈ Z1(U).

Putting all this terminology together and recalling that for holomorphic 1-forms, the
integral of 1-forms generalizes the complex path integral (see Lemma 4.21), we can state
a “modern version” of Cauchy’s integral theorem.

Theorem 4.24 (Cauchy’s Integral Theorem). Let U ⊂ C be open and simply con-
nected. Then every holomorphic 1-form ω ∈ Ω1(U) is null cohomologous.
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5 Holomorphic Functions with prescribed Zeros and

Poles

5.1 Infinite Products

In this section, we define and study infinite products of complex numbers, following [JS87,
3.8].

Definition 5.1. Let (bj)j∈N ∈ C be a sequence and pn :=
∏n

j=0 bj. The sequence (pn)
is called an infinite product. If limn→∞ pn exists (in C) and is not 0, then we call
the infinite product convergent and write the limit as

∏∞
j=0 bj. Furthermore, if there

exists N ∈ N, such that bj = 0 for some j < N and bj ̸= 0 for all n ≥ N and
∏∞

j=N bj
converges (as defined above), then we say that the infinite product converges to 0 and
write

∏∞
j=0 bj = 0.

If pn → 0 and no factor is zero or the limit is infinite, then the infinite product is called
divergent.

One natural question is to ask when an infinite product converges. For simplicity, we
will here and in the following write bj = 1 + cj. Since pn+1 = pn · bn+1 = pn + pn · cn+1, a
necessary condition for convergence of an infinite product is limj→∞ cj = 0 (or equivalently
limj→∞ bj = 1).

One can use the logarithm in order to convert infinite products to infinite sums.
Indeed, the main motivation for the previous somewhat artificial definition is to make
the following theorem particularly clean.

Theorem 5.2. The product
∏∞

j=0 bj converges if and only if there exists N ∈ N, such
that the sum

∑∞
j=N Log(bj) is well-defined and converges.

Proof. If infinitely many of the bj lie in (−∞, 0] ⊂ C, the product does not converge and
the sum is not well-defined for any N ∈ N. If only finitely many of the factors lie in
(−∞, 0] ⊂ C, they can be removed by choosing the “starting index” N ∈ N large enough.
Therefore, we may assume that bj ∈ C− for all j ∈ N, so that the sum is well-defined for
N = 0.
If the partial sums sn :=

∑n
j=0 Log(bj) converge to L ∈ C, then by continuity of exp, we

have
∏n

j=0 bj = exp(sn) → exp(L) ̸= 0.
On the other hand, assume that

∏∞
j=0 bj converges to L ̸= 0 and write pn :=

∏n
j=0 bj as

well as sn :=
∑n

j=0 Log(bj). By potentially replacing b0 with −b0, we may assume that
L ∈ C−. By Lemma 3.12, there exist qn ∈ Z, such that

sn = Log(pn) + 2πiqn

and we thus have to show that qn is constant for sufficiently large n ∈ N.
We calculate

2πi(qn+1 − qn)

= sn+1 − sn + Log(pn)− Log(pn+1)

= Log(bn+1) + Log(pn)− Log(pn+1)

= log(|bn+1|) + log(|pn|)− log(|pn+1|) + i(Arg(bn+1) + Arg(pn)− Arg(pn+1))
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and by comparing imaginary parts, we see that

|qn+1 − qn| =
1

2π
|Arg(bn+1) + Arg(pn)− Arg(pn+1)|

≤ 1

2π
(|Arg(bn+1)|+ |Arg(pn)− Arg(pn+1)|).

Since bn → 1 and (pn) is a Cauchy sequence that for large enough n ∈ N lies in C− (where
Arg : C× → R is continuous), we conclude that |qn+1 − qn| < 1 for sufficiently large n.
Because it is also a whole number, this implies qn+1 = qn, which was to be shown.

With this theorem, we can translate the notion of absolute convergence from sums to
products.

Definition 5.3. An infinite product
∏∞

j=0 bj is called absolutely convergent, if the
infinite sum

∑∞
j=0 log(bj) converges absolutely.

In particular, any infinite product that converges absolutely also converges, just like
for infinite sums.

Theorem 5.4. An infinite product
∏∞

j=0(1 + cj) converges absolutely if and only if the
infinite sum

∑∞
j=0 cj converges absolutely.

Proof. The two sums
∑∞

j=0 Log(1 + cj) and
∑∞

j=0 cj can converge only if cj → 0. In

particular, for all sufficiently large j ∈ N, we have |cj| < 1
2
. For |z| < 1, the Taylor series

of Log at 1 is

Log(1 + z) =
∞∑
k=1

(−1)k+1 z
k

k
,

so for sufficiently large j ∈ N, we calculate

|Log(1 + cj)− cj| =

∣∣∣∣∣
∞∑
k=2

(−1)k+1
ckj
k

∣∣∣∣∣ ≤ 1

2

∞∑
k=2

|cj|k =
|cj|2

2(1− |cj|)
≤ 1

2
|cj|,

which means that Log(1 + cj) ∈ B 1
2
|cj |(cj) and therefore

1

2
|cj| ≤ |Log(1 + cj)| ≤

3

2
|cj|.

As a consequence, the infinite product
∏∞

j=0(1 + cj) converges absolutely if
∏∞

j=0(1 +
|cj|) converges.
Furthermore, while the theorem implies that

∏∞
j=0(1 + cj) converges if the infinite sum∑∞

j=0 cj converges absolutely, it can happen that the infinite product converges, but the
infinite sum does not. We give an example of this phenomena.

Example 5.5. Consider the sequence

c2j−1 =
1√
j
, c2j = − 1√

j
+

1

j
∀ j ∈ N>0.

The even partial sums s2n :=
∑2n

j=1 cj satisfy s2n =
∑n

j=1
1
j
and thus the infinite sum∑∞

j=0 cj does not converge. However, the calculation

(1 + c2j−1)(1 + c2j) =

(
1 +

1√
j

)(
1− 1√

j

)
+

1

j

(
1 +

1√
j

)
= 1 + j−

3
2
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shows that the n-th partial product pn :=
∏n

j=1(1 + cj) satisfies

p2k =
k∏

j=1

(
1 + j−

3
2

)
, p2k−1 =

(
1 +

1√
k

)
· p2(k−1) =

(
1 +

1√
k

)
·
k−1∏
j=1

(
1 + j−

3
2

)
.

Because the infinite sum
∑∞

j=1 j
− 3

2 converges absolutely and 1 + 1√
k
→ 1, we conclude

(using the previous theorem) that
∏∞

j=1(1 + cj) converges (but not absolutely).

5.2 The Mittag-Leffler Theorem
Lec 8
2023-06-07Using partial fraction decomposition (see wikipedia), every rational function R : C → C

can be written in the form

R(z) =
r∑

j=0

Kj∑
k=1

aj,k
(z − zj)k

+
s∑

j=0

bjz
j for aj,k, bj ∈ C;Kj, r, s ∈ N. (5)

We ask whether every meromorphic function f ∈ M(C) can be represented as a sum of
a holomorphic function and principal parts (the double sum in (5). On the other hand,
given a countably infinite number of points in C, we want to construct f ∈ M(C), such
that its poles are precisely those points. Of course, if those points have an accumulation
point, then no such f can exist (by Theorem 1.12). Furthermore, given finitely many
points {z1, . . . , zr} ⊂ C, such a meromorphic function is

f(z) =
r∑

j=1

Kj∑
k=1

aj,k
(z − zj)k

+ g(z) for g ∈ O(C), aj,k, bj ∈ C;Kj, r ∈ N>0.

The case of countably infinitely many poles is the content of the following theorem.

Theorem 5.6 (Mittag-Leffler Theorem (special case)).
Let (zj) ∈ C be a sequence, such that |zj| < |zj+1| for all j ∈ N and |zj| → ∞. Further-
more, for every j ∈ N, we have coefficients aj,k, such that we may construct the principal
parts

hj(z) :=

Kj∑
k=1

aj,k
(z − zj)k

.

Then there exists f ∈ M(C), such that its set of poles is {zj : j ∈ N} and that its
principal part at every zj is hj. Additionally, two such meromorphic functions are unique
up to addition of a holomorphic function on C.

Proof. If z0 = 0 and we have constructed f such that it has the desired properties except
at z0, then the function f + h0 has the desired properties also at z0. Therefore, we may
assume that z0 ̸= 0.
Choose a summable sequence (ϵj) ∈ R+ and a strictly increasing sequence (rj) ∈ R+

with rj → ∞ and rj < |zj| for all j ∈ N. Because all hj are holomorphic on B|z0|(0),
they can be represented as a power series hj(z) =

∑∞
n=0 bj,nz

n (with bj,n ∈ C) on B|z0|(0).
Furthermore, each hj converges uniformly on the disk Brj(0) ⊂ B|zj |(0). Therefore, for
every j ∈ N, we can choose an index mj ∈ N, such that

gj(z) :=

mj∑
n=0

bj,nz
n ∈ O(C)

https://en.wikipedia.org/wiki/Partial_fraction_decomposition#Statement
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satisfies |hj(z)− gj(z)| < ϵj for all z ∈ Brj(0).
We claim that f :=

∑∞
j=0(hj − gj) converges on C \ {zj : j ∈ N} and is the desired

meromorphic function.
Let r > 0 be given and pick N ∈ N large enough such that rN ≥ r. Denoting the N -th
tail sum of f by R :=

∑∞
j=N(hj − gj), for z ∈ Br(0) we observe that

∞∑
j=N

|(hj − gj)(z)| <
∞∑

j=N

ϵj → 0 (N → ∞),

so R is absolutely and uniformly convergent on Br(0). As a uniform limit of holomorphic
functions, R is holomorphic on Br(0). The corresponding partial sum S :=

∑N−1
j=0 (hj−gj)

is holomorphic on Br(0) \ {z0, . . . , zN−1}. For zj ∈ Br(0), we have j < N and S − hk is
holomorphic at zk, which shows that f = S +R has the desired properties.
Finally, the difference of two such meromorphic functions is holomorphic, since the prin-
cipal parts at the zj cancel.

The result is easily generalized to the case where {zj : j ∈ N} is discrete and closed (or
equivalently has no accumulation point; see Lemma 1.11) and there exists a fixedM ∈ N,
such that for any k ∈ N, at most M of the zj satisfy |zj| = |zk|: For i ∈ {1, . . . ,M},
choose sets Ui, such that

∐n
i=1 Ui = {zj : j ∈ N} and that each Ui is either finite or

satisfies |zj| < |zj+1| for all j ∈ N. Then the theorem (or the trivial solution using
rational functions) can be applied to each Ui and the results multiplied.
In fact, it can be shown that it is sufficient to assume that the zj are discrete and closed.

Theorem 5.7 (Mittag-Leffler Theorem).
Theorem 5.6 remains true if the (zj) form a discrete and closed set.

With the terminology of principal part distributions, the theorem can be stated more
concisely.

Definition 5.8. Let G ⊂ C be a region {zj ∈ G : j ∈ N} a discrete and closed set and
h∗ ∈ C[z] a polynomial with h∗(0) = 0. Defining the functions

hj : C \ {zj} → C, z 7→ h∗
(

1

z − zj

)
,

the set H := {(zj, hj) : j ∈ N} is called a principal part distribution.

Every f ∈ M(G) \ {0} defines a principal part distribution H(f) via its principal
parts at its poles. This allows a restatement of Theorem 5.7.

Theorem 5.9 (Mittag-Leffler Theorem for Principal Part Distributions).
For every principal part distribution H on C, there exists f ∈ M(C) \ {0}, such that
H = H(f).

5.3 The Weierstrass Factorization Theorem

Given finite collections α := {α1, . . . , αn} ⊂ C and ν := {ν1, . . . , νn} ⊂ N>0, there exists a
polynomial having α as its zeros with multiplicities ν (i.e. every αj is a zero of multiplicity
νj and there are no other zeros), namely

p(z) =
n∏

j=1

(z − αj)
νj .

We ask whether a similar construction exists if α and ν are countably infinite sets.



5 Holomorphic Functions with prescribed Zeros and Poles 34

Definition 5.10. For an open set U ⊂ C, the set of nonvanishing holomorphic functions
on U is denoted by O∗(U).

Note that O∗(U) is the group of units of O(U), so it is an abelian group w.r.t.
pointwise multiplication.

Lemma 5.11. Let G ⊂ C be a simply connected region and f ∈ O∗(G). Then there
exists g ∈ O(G), such that f = exp ◦g.
g is called logarithm of f on G and is sometimes denoted by log(f).

Proof. Because f ′

f
∈ O(G) and G is a simply connected region, it admits an antiderivative

g ∈ O(G). Since(
exp ◦g
f

)′

=
exp ◦g · g′ · f − exp ◦g · f ′

f 2
=

exp ◦g
f 2

(
f ′

f
f − f ′

)
= 0,

exp ◦g
f

must be constant. Fixing an arbitrary z0 ∈ G, there exists C ∈ C, such that

exp(C) = f(z0)
exp(g(z0))

. Thus replacing g by g + C ∈ O(G) yields (exp ◦g)(z0)
f(z0)

= 1 and thus
exp ◦g

f
= 1.

It follows that a general solution for finite α and ν is of the form p(z) · exp(g(z)) for
g ∈ O(C).

The case of countable infinite α and ν is settled by the following theorem.

Theorem 5.12 (Weierstrass Factorization Theorem (special case)).
Let (αj) ∈ C and (νj) ∈ N>0 be two sequences satisfying α0 = 0, |αj| < |αj+1| for all
j ∈ N and αj → ∞. Then there exists a function f0 ∈ O(C) whose zeros are precisely
the αj and each αj is a zero of multiplicity νj. Explicitly, f0 is of the form

f0(z) = zν0 ·
∞∏
j=1

((
1− z

αj

)
· exp(pj(z))

)νj

,

where each pj is a polynomial given by a partial sum of the power series

− log

(
1− z

αj

)
=

∞∑
l=1

1

l

(
z

αj

)l

.

Furthermore, every function with these properties can be written as f0 · exp ◦g for g ∈
O(C).

Lec 9
2023-06-14

Proof. For fixed j ∈ N, consider a function f that is locally near zj of the form

f(z) := (z − αj)
νj f̃(z) for f̃ holomorphic, f̃(zj) ̸= 0.

Its logarithmic derivative

(log ◦f)′(z) = f ′(z)

f(z)
=

νj
z − αj

+
f̃ ′(z)

f̃(z)

has a pole of order 1 at αj with principal part
νj

z−αj
(and residue νj).

Let j > 0. Because the desired function f0 must have a zero at αj with multiplicity νj, its
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logarithmic derivative g :=
f ′
0

f0
has a pole of order 1 at αj with principal part gj(z) :=

νj
z−αj

.

Using the geometric series, we have the power series representation

gj(z) =
νj
αj

· 1
z
αj

− 1
= −νj

∞∑
k=1

zk−1

αk
j

for z ∈ B|αj |(0).

We now argue just like in the proof of Theorem 5.6. Let (ϵj) ∈ R+ be a summable
sequence and (rj) ∈ R+ a strictly increasing sequence with rj → ∞ and rj < |zj| for all
j ∈ N. Because the sum representation of gj converges uniformly on Brj(0), we can choose

mj ∈ N, such that the partial sum hj(z) := −νj
∑mj

k=1
zk−1

αk
j
, satisfies |gj(z)− hj(z)| < ϵj

for all z ∈ Brj(0). For given r > 0, we choose N ∈ N large enough so that rN ≥ r. Then
we have

∑∞
j=N |gj − hj| <

∑∞
j=N ϵj for z ∈ Br(0) and thus the infinite sum

∑∞
j=1(gj −hj)

converges uniformly on Br(0) \ {αj : j ∈ N>0}. Since r > 0 was arbitrary, it follows that
g(z) :=

∑∞
j=1(gj −hj) converges uniformly on any bounded set that does not contain any

αj for j > 0.
The function

uj(z) :=

((
1− z

αj

)
exp

(
mj∑
l=1

1

l

(
z

αj

)l
))νj

has logarithmic derivative gj − hj and thus by the above is a reasonable approach. It
remains to show that the infinite product

f0(z) := zν0
∞∏
j=1

uj(z)

converges. To see this, let R > 0 be given and choose N ∈ N large enough, such that
|αj| > R for all j ≥ N . By the Cauchy Integral theorem, an antiderivative of gj − hj is

vj(z) :=

∫ z

0

u′j(ξ)

uj(ξ)
dξ =

∫ z

0

(gj(ξ)− hj(ξ))dξ

and the integral is independent of the chosen path in BR(0). The uniform convergence
of
∑∞

j=N(gj − hj) on BR(0) implies that
∑∞

j=N vj converges as well. Furthermore, since
exp ◦vj = exp ◦Log ◦vj = uj, the previous sum is equal to

∑∞
j=N Log(uj) and thus

Theorem 5.2 shows that the desired product
∏∞

j=N uj converges on BR(0).

Finally, if f1 ∈ O(C) is another function with the desired properties, then f1
f0

∈ O∗(C),

so f1
fo

= exp ◦g for some g ∈ O(C) by Lemma 5.11.

This proof follows [FL94, Thm 2.2].
Just like for Theorem 5.6, there is a straightforward generalization of the theorem to
the case that there is a uniform upper bound on the number of αj that have the same
absolute value and it can be shown that it suffices to assume that the αj are discrete and
closed (or equivalently have no accumulation point; see Lemma 1.11).

Theorem 5.13 (Weierstrass Factorization Theorem).
Theorem 5.12 remains true if the αj are discrete and closed (though f0 may have a
different explicit form).

We aim to restate the Weierstrass Factorization theorem (Theorem 5.13) using the
terminology of divisors, which we now introduce. A good reference (in german) is [RS07,
3.1.1].
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Definition 5.14. Let G ⊂ C be a region. A map D : G → Z is called a divisor on G,
if the set {z ∈ G : D(z) ̸= 0} is discrete and closed in G.

By Lemma 1.11, the condition is equivalent to asking that the set has no accumulation
points in G.

Lemma 5.15. D : G → Z is a divisor if and only if for every compact subset K ⊂ G,
there exist only finitely many z ∈ K with D(z) ̸= 0.

Proof. If a compact subset K ⊂ G contains infinitely many z ∈ K with D(z) ̸= 0, then
they have an accumulation point.
On the other hand, suppose that every compact subset K ⊂ G contains only finitely
many z ∈ K with D(z) ̸= 0. This implies that for z0 ∈ G, any closed ball around z0
only contains finitely many z ∈ G with D(z) ̸= 0. Making the radius of the balls small
enough, it follows that there is a ball around z0 that contains at most one of the z ∈ G
with D(z) ̸= 0, so z0 is not an accumulation point.

Definition 5.16. Let G ⊂ C be a region and f ∈ M(G) \ {0} a meromorphic function.
For z ∈ G, the order of f is

ordz(f) :=


0 f holomorphic at z with f(z) ̸= 0

k, f has a zero of order k at z

−k f has a pole of order k at z.

.

By Theorem 1.12 and the definition of meromorphic functions, the map ord(f) : G → Z

is a divisor, called the divisor of f and is denoted by (f). A divisor D is called a
principal divisor, if there exists f ∈ M(G) \ {0}, such that D = (f).
With pointwise addition, the set of divisors Div(G) becomes an abelian group (a subgroup
of {G→ Z}) and we also write a divisor D : G→ Z as a formal sum

∑
z∈GD(z) · z.

Note that if G is compact, any divisor has finite support and thus Div(G) is the free
abelian group generated by the points of G.
It is also worth mentioning that Div(G) is not a ring with pointwise multiplication, since
the constant 1 function is not a divisor.

Example 5.17. For example, the principal divisor on G of f ∈ M(G) \ {0} is

(f) =
∑
z∈G

ordz(f) · z.

In particular, for a rational function f(z) = p(z)
q(z)

with p(z) =
∏r

j=1(z − zj)
mj , q(z) =∏s

j=1(z − ξj)
nj (where zj, ξj ∈ G) we have

(f) =
r∑

j=1

mj · zj −
s∑

j=1

nj · ξj.

Definition 5.18. A divisor D : G→ Z is called positive, if im(D) ⊂ N.

Note that any divisor D can be written as the difference of two positive divisors:
D = D · 1{D≥0} − (−D · 1{D<0}).
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Lemma 5.19. The map

ord : M∗(G) → Div(G), f 7→ (f)

is a group homomorphism. Its image is the set of principal divisors HDiv(G), which thus
forms a subgroup of Div(G).
Furthermore, f ∈ M∗(G) is holomorphic on G if and only if (f) ≥ 0 and invertible in
O(G) if and only if (f) = 0.

In particular, the positive principal divisors are precisely those induced by holomorphic
functions.

Definition 5.20. The quotient group Div(G)/HDiv(G) is called the divisor class
group.

Roughly, this group measures how much the divisors “differ” from being only principal
divisors.

We can now restate Theorem 5.13 for divisors.

Theorem 5.21 (Weierstrass Factorization Theorem for Divisors).
On C, the divisor class group is trivial; i.e. every divisor is a principal divisor.

The divisor class group is also trivial on the Riemann sphere, because the meromorphic
functions on it are the rational functions (see Theorem 2.28).
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6 The Riemann Mapping Theorem
Lec 10
2023-06-216.1 The Topology of Compact Convergence

Definition 6.1. Let X be a topological space. An exhaustion by compact sets of X
is a nested sequence of compact sets

K0 ⊂ K1 ⊂ K2 ⊂ . . . ,

that covers X (i.e.
⋃∞

i=0Ki = X) and such that each Ki is contained in the interior of
Ki+1.

Intuitively, the second condition means that the minimal distance of the boundary of
Ki+1 from Ki is positive.

We will only apply this terminology to C (equipped with the usual topology).

Example 6.2. An exhaustion of C by compact sets is given by the closed balls Kj :=

Bj(0). Similarly, an exhaustion of the open set B1(0) ⊂ C is Kj := B1− 1
j
(0). Note that

this second example can be obtained from the first one by applying a homeomorphism
C→ B1(0) that maps Bj(0) to B1− 1

j
(0) for all j ∈ N>0.

Proposition 6.3. Every open subset U ⊂ C admits an exhaustion by compact sets.

Proof. A dense subset of U is S := U ∩ (Q + iQ). For every q ∈ S, we consider s(q) :=

sup
{
r ∈ [0, 1] : Br(q) ⊂ U

}
∈ (0, 1] and choose a strictly increasing nonzero sequence

s(q)k → s(q) converging to s(q) from below. Because S is countable, we may write it as
S = {qj : j ∈ N}. Then an exhaustion by compact sets of U is given by

Kk :=
k⋃

j=0

Bs(qj)k(qj).

As an alternative argument, one can note that R :=
{
Br(q) ⊂ U : r ∈ Q>0, q ∈ S

}
is

countable and choose an enumeration R = {Rj : j ∈ N}. Then one defines recursively

K1 := R1 and Kk+1 :=
⋃L

j=1Rj, where L ∈ N is chosen large enough, such that Kk ⊂⋃L
j=1 int(Rj), which is always possible by compactness.

We want to define a topology on the C-algebra O(U) of holomorphic functions on U .
For this, we first define one on the algebra of continuous functions C(U,C), which contain
O(U) as a subalgebra.

Definition 6.4. For K ⊂ U compact, a seminorm on C(U,C) is given by the supremum
norm w.r.t. K; i.e.

pK : C(U,C) → [0,∞), f 7→ sup
z∈K

|f(z)|.

Of course, this is not a norm, since any function f ∈ C(U,C) that is zero onK satisfies
pK(f) = 0.
The smaller the chosenK ⊂ U is, the “fewer” information pK reveals about the continuous
functions, since it only considers each function on K. For example, if K = {u} is just a
point, then pK(f) = |f(u)|.
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This also translates to the topologiesOK induced by each of the seminorms pK . IfK ⊂ K ′

are two compact sets in U , then a set that is open w.r.t. pK is also open w.r.t. pK′ ; that
is, OK ⊂ OK′ . In other words, the topology OK′ is finer than OK , so in this sense, it
yields more information.

Definition 6.5. We equip C(U,C) with the topology of compact convergence that
is generated by the basis⋃

K⊂U compact

OK = {V ⊂ C(U,C) : ∃K ⊂ U compact : V open w.r.t. pK};

that is, V ⊂ C(U,C) is open if and only if for every f ∈ V , there exists a compact subset
K ⊂ U and ϵ > 0, such that {g ∈ C(U,C) : pK(f − g) < ϵ} ⊂ V .
As a C-subspace of C(U,C), the C-algebra of holomorphic functions O(U) inherits this
topology.

Because we have OK ⊂ OK′ for K ⊂ K ′, it follows that this topology can also
be described as the topology generated by

⋃∞
j=0OKj

, where (Kj) is an an arbitrary
exhaustion by compact sets of U .
In the language of category theory, this can also be described as the limit of the functor

({K ⊂ U compact},⊂) → Top, K 7→ (C(U,C),OK), (K ⊂ K ′) 7→ idC(U,C),

where we view the partially ordered set ({K ⊂ U compact},⊂) as a category with a single
morphism K → K ′ if and only if K ⊂ K ′. Here Top denotes the category of topological
spaces and continuous maps. By choosing an exhaustion (Kj) by compact sets of U , it
can equivalently be described as the inverse limit

. . . (C(U,C),OK2) (C(U,C),OK1) (C(U,C),OK0).
id id id

For f ∈ C(U,C), a neighborhood basis of f is given by the collection of open balls
BK

ϵ (f) := {g ∈ C(U,C) : pK(f − g) < ϵ} around f w.r.t. all of the pK seminorms{
BK

ϵ (f) ⊂ C(U,C) : K ⊂ U compact, ϵ > 0
}
.

In particular, the topological space is first countable, since a countable neighborhood
basis can be obtained by choosing an exhaustion (Kn) by compact sets of U :{

BKn
1
n

(f) ⊂ C(U,C) : n ∈ N>0

}
.

In fact, C(U,C) is even metrizable. In order to see this, we use general results from
category theory and topology. One first checks that C(U,C) with the topology of compact
convergence is the limit of the diagram (in Top)

. . . (C(K2,C),OK2) (C(K1,C),OK1) (C(K0,C),OK0),

where OKi
is just the topology induced by the supremums norm on Ki and every continu-

ous map is a restriction. By the universal property of the product
∏∞

j=0(C(Kj,C),OKj
),

there exists a canonical map C(U,C) →
∏∞

j=0(C(Kj,C),OKj
), mapping f ∈ C(U,C) to

the sequence with j-th component f |Kj
and this is seen to be a topological embedding.
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Lemma 6.6. Let (Xn)n∈N>0 be a sequence of metrizable topological spaces. Denoting a
metric of Xn by dn, their product

∏∞
n=1Xn is metrizable with metric

d(x, y) :=
∞∑
n=1

1

2n
dn(xn, yn)

1 + dn(xn, yn)
.

Because the above embedding allows us to view C(U,C) with the topology of compact
convergence as a subspace of

∏∞
j=0(C(Kj,C),OKj

), we obtain the following result.

Theorem 6.7. The set of continuous functions C(U,C) (and thus O(U)) equipped with
the topology of compact convergence is metrizable. Choosing an exhaustion (Kn) by
compact sets of U , a metric inducing the topology is given by

d(f, g) :=
∞∑
n=1

1

2n
pKn(f − g)

1 + pKn(f − g)
.

Furthermore, it can be shown that the topology of compact convergence is just the
compact-open topology and that O(U) becomes a locally convex topological vector space.

6.2 Compact Convergence

We now investigate convergence in this metrizable topological space.

Definition 6.8. Let (fj) be a sequence of functions in C(U,C) (or O(U)) that converges
to f ∈ C(U,C) w.r.t. the topology of compact convergence; that is,

pK(fj − f) = sup
z∈K

|fj(z)− f(z)| → 0 ∀ K ⊂ U compact.

We say that fj is compactly convergent to f .

Clearly any compactly convergent sequence is also pointwise convergent.
It should also be mentioned that this notion of convergence is equivalent to local uniform
convergence, where one asks that for each point z0 ∈ U , there exists a neighborhood of
it on which the (fj) converge uniformly. This is true because any compact set is covered
by finitely many of such neighborhoods and on the other hand any such neighborhood
contains a compact ball.

As a consequence of the next theorem, the limit of a compactly convergent sequence
of holomorphic functions is automatically holomorphic. See [Bor16, Thm 3.3.2] for a
proof. Another immediate consequence is that taking derivatives O(U) → O(U), f 7→ f ′

constitutes a continuous function.

Theorem 6.9 (Weierstrass Convergence Theorem).
If a sequence (fk) ∈ O(U) compactly converges to a function f : U → C, then f ∈ O(U).

Furthermore, all derivatives (f
(n)
k ) compactly converge to (f (n)).

Our next goal is to characterize the compact sets in O(U). For this, we use the
following lemma from category theory and topology.

Lemma 6.10. Let lim(F ) denote the limit of a functor F : C → Top, which by definition
comes equipped with continuous maps πC : lim(F ) → F (C) for C ∈ C. Then a net (in
particular a sequence) (xn) ∈ lim(F ) converges to x ∈ lim(F ) if and only if for all C ∈ C,
the nets (πC(xn)) converge to (πC(x)) in F (C).
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Proof. Any limit in Top carries the initial topology. This can be shown using the char-
acterstic property of the initial topology (see here). Using the definition of the initial
topology, it is straightforward to verify that a net in such a topological space converges
if and only if its images converge.

We spell out the special case of the previous general lemma that we will make use of.
It can also be proven directly, without any appeals to category theory.

Lemma 6.11. Let U ⊂ C be open and (fk) ∈ O(U) a sequence of holomorphic func-
tions. (fk) is compactly convergent if and only if for every compact subset K ⊂ U , the
restrictions (fk|K) converge in (C(K,C), ∥·∥∞).
In that case, denoting the limit of (fk|K) by gK ∈ C(K,C) and the limit of fk in O(U)
by g, we have g|K = gK for all K ⊂ U compact.

As a small application of this lemma, we show that O(U) is complete.

Theorem 6.12. With the metric from Theorem 6.7, O(U) is complete.

Proof. For an exhaustion (Kn) of U , we have the estimate

1

2n+1
pKn(f − g) ≤ 1

2n
pKn(f − g)

1 + pKn(f − g)
≤ d(f, g) ∀ f, g,∈ O(U).

Therefore, the restriction maps πn : (O(U), d) → (C(Kn,C), ∥·∥∞) are Lipschitz continu-
ous. It follows that any Cauchy sequence (fk) ∈ O(U) translates to a Cauchy sequence
(πn(fk))k for all n ∈ N. Because any compact set K ⊂ U is contained in one of the Kn,
the sequence (πK(fk))k is a Cauchy sequence in (C(K,C), ∥·∥). Since (C(K,C), ∥·∥∞) is
a Banach space, those sequences converge and thus Lemma 6.11 implies that (fk) must
be convergent as well.

Definition 6.13. A subset A ⊂ O(U) is called bounded, if for all compact sets K ⊂ U ,
the set pK(A) = {supz∈K |f(z)| : f ∈ A} is bounded in R; that is, if for any compact set
K ⊂ U , there exists C ∈ R>0 such that |f(z)| < C for all f ∈ A and z ∈ K.

It should be noted that this is not the notion of bounded that one would obtain from
the above metric, because that metric satisfies d(f, g) ≤ 1 for all f, g ∈ O(U) and thus
any set is bounded w.r.t. it.

With this terminology, we can generalize a familiar fact from Rn, namely that the
compact sets are precisely the closed and bounded ones. The proof of the corresponding
theorem requires yet another lemma.

Lemma 6.14. Let U ⊂ C be open, K ⊂ U compact and A ⊂ O(U) be bounded. Then
A is uniformly locally Lipschitz continuous on K in the sense that there exists c > 0,
r > 0, such that |f(z)− f(w)| ≤ c · |z − w| for all z, w ∈ K with w ∈ Br(z) and f ∈ A.

Proof. As a compact set, K has a positive “minimal distance” d(K, ∂U) > 0 from the
boundary ∂U of U , which is closed and disjoint and that we may assume to be nonempty.
Thus there exists a compact set K∗ ⊂ U and r > 0, such that B2r(w) ⊂ K∗ for all
w ∈ K. Let z, w ∈ K be arbitrary with |z − w| < r. Then any v := w + t(z − w) for
t ∈ [0, 1] satisfies v ∈ K and Br(v) ⊂ K∗. Cauchy’s inequality (see [Bor16, Thm 3.2.1])
shows that z ∈ K admits the estimate

|f ′(z)| ≤ 1

r
∥f∥∂Br(z)

≤ 1

r
pK∗(f) ≤ 1

r
sup
g∈A

pK∗(g).

https://math.stackexchange.com/questions/4385765/limits-in-the-category-of-topological-spaces-must-come-equipped-with-the-initial
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Since

f(z)− f(w) =

∫ 1

0

f ′(w + t(z − w))dt · (z − w),

we conclude that

|f(z)− f(w)| ≤ 1

r
sup
g∈A

pK∗(g) · |z − w|.

Lec 11
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Theorem 6.15 (Montel). A ⊂ O(U) is compact if and only if it is closed and bounded.

Proof. Suppose that A ⊂ O(U) is compact. Because pK : O(U) → R is continuous, the
image pK(A) ⊂ R is compact and thus bounded. Furthermore, A is closed as a compact
subset of a Hausdorff space.
On the other hand, let A ⊂ O(U) be closed and bounded. Since the topology is metriz-
able, it suffices to show that A is sequentially compact; that is, that any sequence (fj) ∈ A
has a convergent subsequence. To prove this, we use a diagonal argument.
Let (qj) ⊂ U be a sequence whose image in U is dense (e.g. U∩(Q+iQ)). We may choose
a subsequence (f1,j) of fj, such that the sequence (f1,j(q1)) converges in C. This subse-
quence admits another subsequence (f2,j), such that (f2,j(q2)) converges in C. Because it
is a subsequence of the first one, (f2,j(q1)) converges as well. Iterating this, we obtain a
sequence of subsequences fk,j with the property that (fk,j(ql))j converges for l ≤ k. Thus
the sequence (gk) := (fk,k) is a subsequence of (fj), such that limk→∞ gk(qj) ∈ C exists
for every j ∈ N>0.
Let K ⊂ U be a compact subset. By Lemma 6.14, we can choose r > 0 and c > 0, such
that

|f(z)− f(w)| ≤ c · |z − w| ∀ z, w ∈ K,w ∈ Br(z), f ∈ A.

For given ϵ > 0, we set C := min
{
r, ϵ

3c

}
> 0. Because K is compact and (qj) is dense, the

cover {BC(qj) : j ∈ N} of K admits a finite subcover; that is, there exists L ∈ N, such
that for all z ∈ K there is k ≤ L with |z − qk| < C. By the above, there exists N ∈ N,
such that

|gn(qk)− gm(qk)| <
ϵ

3
∀ m,n ≥ N, k ≤ L.

Because any z ∈ K satisfies |z − qk| < C for some k ≤ L, it follows for m,n ≥ N that

|gn(z)− gm(z)| ≤ |gn(z)− gn(qk)|+ |gn(qk)− gm(qk)|+ |gm(qk)− gm(z)| < ϵ.

We conclude that pK(gn − gm) < ϵ for all m,n ≥ N , so (gn) is a Cauchy sequence in the
Banach space (C(K,C), ∥·∥∞). By Theorem 6.9, the sequence also converges in O(U)
and the limit lies in A as it is closed.

6.3 Univalent Functions

Definition 6.16. Let U ⊂ C be open. A conformal map f : U → C is a holomorphic
function f ∈ O(U), such that f ′ : U → C has no zeros.

As a consequence of Theorem 1.6, a conformal map locally preserve angles and orien-
tations at every point.

Definition 6.17. For U ⊂ C open, an injective holomorphic function f : U → C is called
univalent.
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By Theorem 1.15, a univalent function is a topological embedding. In fact, even more
is true.

Theorem 6.18 ([Bor16, Thm 7.4.1]). Let G ⊂ C be a region and f ∈ O(G) univalent.
Then f is biholomorphic (onto its image) and conformal.

We now show that compact convergence preserves the injectivity of the functions.

Theorem 6.19 (Hurwitz).
Let G ⊂ C be a region and (fj) a sequence of univalent functions on G. If (fj) converges
compactly to a nonconstant f ∈ O(G), then f is univalent.

Proof. By contraposition, assume that there exist u, v ∈ G with u ̸= v and f(u) = f(v).
By replacing f with f − f(u), we may assume that u and v are distinct zeros of f .
According to Theorem 1.12, we can choose r > 0 be small enough, such that K :=
Br(u) ⊂ G and that f has no other zero (except u) on this set. Then the residuum of
the logarithmic derivative f ′

f

m :=
1

2πi

∫
∂Br(u)

f ′(ξ)

f(ξ)
dξ ∈ N>0

equals the order of the zero at u (see [Bor16, Thm 5.5.1]). Because (fj) is compactly
convergent to f , the same is true for their derivatives by Theorem 6.9, so the sequence
(f ′

j) converges uniformly to f ′ on K. Therefore, we can find N ∈ N, such that for j ≥ N ,
fj has no zeros on ∂K and

1

2πi

∫
∂Br(u)

f ′
j(ξ)

fj(ξ)
dξ = m.

It follows (by the same theorem as above) that for all large enough j ∈ N, the function
fj has at least one zero in the interior of Br(u).
With the same argument, we find a neighborhood V ⊂ G \K of v such that for all large
enough j ∈ N , fj has a zero in V . This shows that only finitely many of the fj are
univalent.

Lemma 6.20 (Lemma of Schwarz).
Let f : B1(0) → B1(0) be holomorphic with f(0) = 0. Then |f(z)| ≤ |z| for z ∈ B1(0)
and |f ′(0)| ≤ 1.
Furthermore, if |f(z0)| = z0 for some z0 ∈ B1(0) \ {0} or |f ′(0)| = 1, then f is just given
by scalar multiplication with a scalar λ ∈ S1(0) (i.e. f(z) = λ · z).

Proof. Consider the holomorphic function

g : B1(0) \ {0} → B1(0), z 7→
f(z)

z

and note that limz→0 g(z) = f ′(0). Setting g(0) := f ′(0), the Riemann removable singu-
larity theorem (see [Bor16, Thm 3.5.2]) implies that g ∈ O(B1(0)).
For r ∈ (0, 1), the maximum modulus principle (see [Bor16, Cor 3.4.3]) yields ζ ∈ ∂Br(0),
such that ∣∣∣∣f(z)z

∣∣∣∣ = |g(z)| ≤ |g(ζ)| =
∣∣∣∣f(ζ)ζ

∣∣∣∣ ≤ 1

r
∀ z ∈ Br(0) \ {0}.
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Taking the limit r → 1 from below yields |f(z)|
|z| ≤ 1 for z ∈ B1(0).

Moreover, if z0 ∈ B1(0)\{0} satisfies |f(z0)| = |z0|, it follows that |g(z0)| = 1 and because
|g| ≤ 1 on B1(0), the maximum modulus principle implies that g is a constant λ ∈ S1.
The same argument applies if instead |f ′(0)| = 1, since then |g(0)| = 1.

Intuitively, the lemma tells us that holomorphic functions preserving the unit ball
cannot grow fast; they cannot enlarge the modulus of their input.

We require one more lemma before we can prove the Riemann mapping theorem.

Lemma 6.21. Let G ⊂ C be a simply connected region f ∈ O∗(G) and k ∈ N>0. Then
there exists g ∈ O(G), such that f = gk (i.e. f(z) = g(z)k for all z ∈ G).
g is called k-th root of f on G.

Proof. By Lemma 5.11, there exists h ∈ O(G) such that f = exp ◦h and thus g(z) :=

exp
(

h(z)
k

)
∈ O(G) is the desired function.

6.4 The Riemann Mapping Theorem

Theorem 6.22 (Riemann Mapping Theorem).
Every simply connected region G ⊊ C is biholomorphically equivalent to B1(0); i.e. there
exists a biholomorphic function f : G→ B1(0).

Proof. We differentiate three cases for the simply connected region G.
Case 1 : G ⊂ B1(0).
Since any translation z 7→ z + c is a biholomorphic map, we may assume that 0 ∈ G.
Consider the nonempty subset

A := {f ∈ O(G) : f(G) ⊂ B1(0), f univalent, f(0) = 0, |f ′(0)| ≥ 1} ⊂ O(G).

We claim that it is compact. By Theorem 6.15, since A is clearly bounded, it suffices to
show that A is closed. Let fj → f be a convergent sequence in A. To see that f ∈ A, we
first observe using Theorem 6.9 that f ∈ O(G), f(0) = 0 and |f ′(0)| = limj→∞

∣∣f ′
j(0)

∣∣ ≥ 1.

Furthermore, because f is not constant, f(G) ⊂ B1(0) is open (in C) by Theorem 1.15,
so f(G) ⊂ B1(0). Using Theorem 6.19, it follows that f is univalent and thus f ∈ A.
Because the map f 7→ |f ′(0)| is continuous (by Theorem 6.9) the compactness of A yields
the existence of g ∈ A with

|g′(0)| = sup
f∈A

|f ′(0)| ≥ 1.

We claim that g(G) = B1(0), so that g : G→ B1(0) is biholomorphic by Theorem 6.18.
Assume this is not the case; i.e. there exists a ∈ B1(0) \ g(G). Because a ̸= 0, we can
choose b ∈ B1(0) with b

2 = a. For c ∈ B1(0), we consider the function

ϕc : B1(0) → B1(0), z 7→
z − c

c̄z − 1

and note that it is biholomorphic, self-inverse and satisfies ϕc(c) = 0.
We construct the functions Lec 12

2023-07-06
p := ϕa ◦ ϕb

2 ∈ O(B1(0)), q := ϕa ◦ g ∈ O(G),

where ϕb
2 denotes the function z 7→ ϕb(z)

2. Observe that p(0) = 0, p(B1(0)) ⊂ B1(0)
and that p is not injective (as e.g. p(ϕb

−1(1
2
)) = p(ϕb

−1(−1
2
))), so Lemma 6.20 implies
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|p′(0)| < 1. Because G is a simply connected region and 0 /∈ q(G), Lemma 6.21 yields
h ∈ O(G) with h2 = q. Since q(0) = a, it follows that h(0) ∈ {b,−b}, so by potentially
replacing h with −h, we may assume that h(0) = b. Additionally, h is univalent as the
same holds true for q.
Using these observations, it follows that the function f := ϕb ◦ h ∈ O(G) is well-defined,
univalent and satisfies f(G) ⊂ B1(0) and f(0) = 0. Because

(p ◦ f)(z) =
(
ϕa ◦ ϕ2

b ◦ ϕb ◦ h
)
(z) = ϕa

(
h(z)2

)
= ϕa(q(z)) = g(z)

we have p′(0) · f ′(0) = g′(0), so that

|f ′(0)| =
∣∣∣∣g′(0)p′(0)

∣∣∣∣ > |g′(0)| ≥ 1,

showing that f ∈ A and contradicting the definition of g as a supremum. This establishes
the theorem in the special case that G ⊂ B1(0).
Case 2 : G is not dense in C.
By assumption, there exists a ∈ C and ϵ > 0, such that |z − a| > 2ϵ for all z ∈ G. Let
b ∈ G be arbitrary. The function f(z) := ϵ

z−a
∈ O(G) is univalent and satisfies f(G) ⊂

B 1
2
(0), so by Theorem 6.18, g(z) := f(z)−f(b) ∈ O(G) constitutes a biholomorphic map

onto its image g(G) ⊂ B1(0) . By the first case, its image is biholomorphic to B1(0) and
thus the assertion follows.
Case 3 : G ⊂ C arbitrary simply connected region.
By translating z 7→ z + c, we may assume that 0 /∈ G. Because G is simply connected,
Lemma 6.21 yields the existence of f ∈ O(G) with f 2 = idG. Because f is univalent,
Theorem 6.18 implies that f is a biholomorphic map onto its image H := f(G). The set
H ∩ (−H) = {c ∈ G : c ∈ H,−c ∈ H} must be empty; for if not, there exist c, u, v ∈ G,
such that c = f(u) = −f(v) and thus u = f(u)2 = (−f(v))2 = v, so that c = 0.
In particular, any ball Bϵ(z) ⊂ H with Bϵ(z) ⊂ R+ + iR gives rise to the ball Bϵ(−z)
with Bϵ(−z) ∩H = ∅. Consequently, H is not dense in C and the second case yields the
claim.

Note that by Theorem 1.14, C and B1(0) are not biholomorphically equivalent.
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7 Sheaf Cohomology in the Complex Plane

7.1 Sheaves

Sheaves are a tool from category theory that essentially describes local properties. They
are of key importance to algebraic geometry and also appear in complex analysis, as we
will see.

Definition 7.1. Let X be a topological space. Its open sets O are partially ordered by
inclusion and thus form a category (O,⊂).
A presheaf F of X in a category C is a functor F : (O,⊂)op → C. We restrict ourselves
to the case that C = Ab is the category of abelian groups. Explicitly, it consists of the
following data:

(a) For every open set U ⊂ X, we have an abelian group F (U).

(b) For every inclusion V ⊂ U of open sets V, U in X, there is a homomorphism of
abelian groups

φU,V : F (U) → F (V ),

such that

(1) φU,U : F (U) → F (U) is the identity idF (U).

(2) For the inclusion W ⊂ V ⊂ U of open sets, it holds φU,W = φV,W ◦ φU,V .

The elements of F (U) are called sections of F over U and the group homomorphisms
φU,V are called restriction homomorphisms.
It is common to write s|V := φU,V (s) for s ∈ F (U) when U is clear from the context.

Roughly, this construction allows attaching groups to the open sets of a topological
space in such a way that passing to a smaller open set corresponds to passing to a different
group.

Definition 7.2. A presheaf F on a topological space X is called a sheaf if the following
two conditions are satisfied:

(a) Separateness : If U ⊂ X is open, {Vi}i∈I is an open cover of U and s ∈ F (U), such
that s|Vi

= 0 for all i ∈ I, then s = 0.

(b) Glueing of sections : If U ⊂ X is open, {Vi}i∈I is an open cover of U and there are
si ∈ F (Vi) such that for all i, j ∈ I, we have si|Vi∩Vj

= sj|Vi∩Vj
, then there exists

an element s ∈ F (U) with s|Vi
= si for all i ∈ I.

A presheaf that satisfies the first condition is called separated.

The s from the second condition is unique by the first condition and a sheaf satisfies
F (∅) = 0. Intuitively, a presheaf is a sheaf if it allows passing from “local” to “global”
information.

Example 7.3. Let X be a topological space and A an abelian group.
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(a) The most important class of sheaves are function sheaves. These are sheaves as-
signing to U ⊂ X a certain subset of functions from U to some fixed abelian group
G and whose restriction morphisms are given by function restriction.
For example, the functor F (U) := {continuous functions U → C} (or to R) with re-
stricting maps as its action on morphisms defines the sheaf of continuous functions.
If X is a smooth manifold, one can analogously define the sheaf of differentiable
functions.
Such functors are always presheaves; they are sheaves if and only if the condi-
tion imposed is of “local” nature; i.e. if it can be checked locally on an arbi-
trary small neighborhood of a given point. For instance, the functor F (U) :=
{constant functions U → R} is generally not a sheaf, since “being constant” is a
global property and not a local one. Here being a local property means that the
property can be checked on an arbitrary small neighborhood.

(b) The functor

F (U) :=

{
A U ̸= ∅
0 otherwise

,

acting via the identity φU,V = idA for ∅ ̸= V ⊂ U is a presheaf on X but generally
not a sheaf. This is the “constant function” presheaf from the previous example.

(c) Of central importance in complex analysis is the sheaf of holomorphic functions
O on an open subset X ⊂ C, where O(U) (for U ⊂ X open) denotes the group
of holomorphic functions U → C and the restriction morphisms are just function
restriction.

(d) Of similar importance is the sheaf of meromorphic functions M on an open set
X ⊂ C, assigning to an open set U ⊂ X the set of meromorphic functions M(U)
on that set. Note that this is not a function sheaf in the above sense (at least not
for G = C).

(e) The constant sheaf const(A) associated to A is the function sheaf

G(U) := {locally constant functions U → A}.

If X is locally connected (i.e. all connected components of all open subsets U ⊂ X
are open), then one can show that this functor is isomorphic to the functor assigning
to U ⊂ X the group

∏
i∈I A for the decomposition U =

∐
i∈I Ui of U into connected

components Ui.
Lec 13
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of presheaves (and in particular sheaves). We first give the categorical definition, but for
our purposes it suffices to understand the explicit construction (6).

Definition 7.4. Let X be a topological space, F a presheaf on X and x ∈ X a point.
The stalk Fx of F at x is the direct limit

Fx := lim−→
U⊂X open

x∈U

F (U).

By definition, it comes equipped with a canonical group homomorphism F (U) → Fx for
every open neighborhood U ⊂ X of x. The image of a section s ∈ F (U) is denoted by s
or by sx. The elements of the stalk are called germs.
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For a directed set (I,≤) and a functor F : (I,≤) → C, a cocone is an object B ∈ C
together with morphisms F (i) → B for i ∈ I, such that the diagram

F (i) F (j)

B

F (i≤j)

commutes for all i, j ∈ I with i ≤ j.
The direct limit of F (if existent) is a cocone (i.e. an object colim(F ) with morphisms
F (i) → colim(F ) for i ∈ I), satisfying the following universal property: For any cocone
(i.e. an object C ∈ C with morphisms fi : F (i) → C for i ∈ I), there exists a unique
morphism colim(F ) → C, such that the diagram

F (i) colim(F )

C

fi ∃ !

commutes for all i ∈ I.
In algebraic categories such as Ab, direct limits always exist. Explicitly, the underlying
set is the “quotiented” disjoint union

(∐
i∈I F (i)

)
/ ∼, where ∼ is the equivalence relation

such that for xi ∈ F (i), xj ∈ F (j):

xi ∼ xj :⇐⇒ ∃ k ∈ I : k ≥ i, k ≥ j, F (i ≤ k)(xi) = F (j ≤ k)(xj).

This becomes an abelian group by defining

xi + xj := F (i ≤ k)(xi) + F (j ≤ k)(xj) for k ≥ i, k ≥ j.

The canonical group homomorphism F (i) → colim(F ) is induced by the inclusion F (i) ↪→∐
i∈I F (i).

Applying this to the case of stalks, where I is the set of open neighborhoods of x
ordered by inclusion, it follows that

Fx =

( ∐
U⊂Xopen

x∈U

F (U)

)
/ ∼ (6)

with
(U, σ) ∼ (V, τ) :⇐⇒ ∃ W ⊂ U ∩ V, W open, x ∈W, σ|W = τ |W .

In particular, germs can be represented as pairs (U, σ) with U ⊂ X an open neighbhor-
hood of x and σ ∈ F (U) a section. Two pairs represent the same equivalence class if and
only if there is a smaller neighborhood W ⊂ U ∩ V such that σ and τ become equal in
the corresponding group (i.e. σ|W = τ |W ).
Intuitively, if sx ∈ Fx has a certain property this just means that there exists an open
neighborhood U of x and section s ∈ F (U) having that same property.

Example 7.5.
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(a) Consider a function presheaf F for a fixed abelian group G. The stalk of x ∈ X
consists of the functions agreeing in a neighborhood of x (with pointwise addition).
There exists an evaluation homomorphism Fx → G, (s, U) → s(x), which can be
dedcued from the universal property of the stalk (a colimit). In this sense, the stalk
at x of a function presheaf represents the “local behavior” of those functions at x.

(b) In particular, for the sheaf of holomorphic functions O on an open set X ⊂ C, the
stalk Ox is the abelian group consisting of all convergent Taylor series

∑∞
j=0 aj(z−

x)j at x and the evaluation homomorphism is Fx → C,
∑∞

j=0 aj(z − x)j 7→ a0.

(c) The stalk Mx of the sheaf of meromorphic functions M on an open set X ⊂ C is
the abelian group of convergent Laurent series

∑∞
j=−N aj(z − x)j at x.

7.2 Riemann Surfaces

Generalizing the Riemann sphere from Section 2, we introduce Riemann surfaces. The
differentiable structure of a real manifold is easily translated to the complex case, by
replacing “diffeomorphism” with “biholomorphic map”. However, the definition might
look quite artificial if one is not familiar with smooth manifolds.

Definition 7.6. A topological complex manifold X is a second-countable Hausdorff
space such that every point admits a neighborhood U and a homeomorphism ϕ : U → V
with U ⊂ X open and V ⊂ Cn open.
Such a homeomorphism is called a (complex) chart and is often denoted by (ϕ, U).
Two complex charts (ϕ, U) (ψ, V ) are called compatible (or biholomorphically equiv-
alent), if the transition function

ψ ◦ ϕ−1 : ϕ(U ∩ V ) → ψ(U ∩ V )

is biholomorphic.

Figure 7: The transition functions of a manifold.

A complex atlas is a set of transition functions {(ϕi, Ui) : i ∈ I}, such that any two
are compatible and such that they cover X in the sense that X =

⋃
i∈I Ui.

There is an equivalence relation ∼ on the set of all complex atlases on X, where

A ∼ B :⇐⇒ ∀ (ϕi, Ui) ∈ A, (ψi, Vi) ∈ B : (ϕi, Ui) and (ψi, Vi) are compatible.
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An equivalence class of complex atlases is called a complex structure on X.
An n-dimensional complex manifold X is a topological complex manifold X together
with a complex structure on X.
A Riemann surface is a 1-dimensional connected complex manifold.

Just like a smooth structure on a smooth (real) manifold allows us to define when
functions on that manifold are differentiable, the complex structure of a complex manifold
allows us to define when a function on that manifold is holomorphic. We will give the
corresponding definition after highlighting some examples.

Example 7.7.

(a) Any region G ⊂ C is a Riemann surface. Here the atlas consisting only of the
inclusion G ↪→ C gives a complex structure.
In particular, C itself is a Riemann surface.

(b) The Riemann sphere Ĉ is a compact Riemann surface with an atlas consisting of
the two charts

idC : C→ C, J : Ĉ \ {0} → C,

where J is the inversion map from Definition 2.9.

(c) The torus S1 × S1 can be endowed with the structure of a Riemann surface.

Definition 7.8. For a Riemann surfaceX and Y ⊂ X an open subset, a function f : Y →
C is called holomorphic (meromorphic), if the composition f ◦ ϕ−1 : ϕ(U ∩ Y ) → C

is holomorphic (meromorphic) for all charts (ϕ, U) in a complex atlas (of the complex
structure) of X.
Extending the notation from Definition 1.8 and Definition 1.17, the set of all holomorphic
functions Y → C is denoted by O(Y ) and the set of all meromorphic functions Y → C

by M(Y ).

Note that this definition agrees with the usual definition of holomorhpic (and mero-
morphic) functions when we view a region G ⊂ C as a Riemann surface, since f ◦ϕ−1 = f
for the inclusion G ↪→ C. Similarly, the definition agrees with Definition 2.12 if we con-
sider the Riemann sphere as a Riemann surface (as above).
It is straightforward to see that Example 7.3 can be extended to define the sheaf of holo-
morphic O and the sheaf of meromorphic M functions for open subsets of any Riemann
surface (instead of just C).

7.3 Čech Cohomology
Lec 14
2023-07-19We can finally introduce Čech Cohomology. For more details, see [For81, Ch. 12].

Definition 7.9. LetX be a topological space with an open cover (Ui)i∈I and F a presheaf
on X. For q ∈ N, the product abelian group

Cq(Ui, F ) :=
∏

i∈Iq+1

F

(
q⋂

j=0

Uij

)
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is called the abelian group of q-cochains.
This means that a q-cochain is a collection (or function from Iq+1)

(
fi0,...,iq

)
i0,...,iq∈I

with fi0,...,iq ∈ F

(
q⋂

j=0

Uij

)
,

and fi0,...,iq is called its (i0, . . . , iq)-component.

We define a coboundary operator δ, carrying a q-cochain to a (q + 1)-cochain.

Definition 7.10. For q ∈ N, the (q-th) coboundary operator is the group homomor-
phism

δ : Cq(Ui, F ) → Cq+1(Ui, F ),

mapping a q-cochain f ∈ Cq(Ui, F ) to the (q+1)-cochain with (i0, . . . , iq, iq+1)-component

(δf)i0,...,iq+1 =

q+1∑
j=0

(−1)j fi0,...,îj ,...,iq+1

∣∣∣
Ui0

∩···∩Uiq+1

,

where the hat ·̂ means that the respective index is omitted.

In particular, for q = 0 the 0-th coboundary operator δ : C0(Ui, F ) → C1(Ui, F ) maps
(fi)i∈I ∈ C0(Ui, F ) to the 1-chain with (i, j)-component fj|Ui∩Uj

− fi|Ui∩Uj
.

Similarly, the first coboundary operator δ : C1(Ui, F ) → C2(Ui, F ) maps (fi,j)i,j∈I ∈
C1(Ui, F ) to the 2-chain with (i, j, k)-component fj,k|Ui∩Uj∩Uk

−fi,k|Ui∩Uj∩Uk
+fi,j|Ui∩Uj∩Uk

.

A straightforward calculation establishes the following lemma.

Lemma 7.11. For any topological space X, open cover (Ui)i∈I of X and presheaf F
on X, the abelian groups of q-chains with the coboundary operator δ form a cochain
complex ; that is, δ ◦ δ = 0.

C0(Ui, F ) C1(Ui, F ) C1(Ui, F ) . . .δ δ δ

Definition 7.12. Let X be a topological space with an open cover (Ui)i∈I and F a
presheaf on X. The group of q-cocycles is

Zq(Ui, F ) := ker
(
δ : Cq(Ui, F ) → Cq+1(Ui, F )

)
⊂ Cq(Ui, F ).

The group of q-coboundaries is

Bq(Ui, F ) := im
(
δ : Cq−1(Ui, F ) → Cq(Ui, F )

)
⊂ Cq(Ui, F ).

By Lemma 7.11, we have Bq(Ui, F ) ⊂ Zq(Ui, F ), so we may define the n-th (Čech)
cohomology group (with coefficients in F relative to (Ui)) as the quotient group

Hq(Ui, F ) := Zn(Ui, F )/B
n(Ui, F ).
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One may wonder whether the cohomology group depends on the chosen cover (Ui)i∈I
of the topological space X. In general, this is indeed the case and in order to make it
independent from the chosen cover, one can use a direct limit. However, we will content
ourselves with the above definition, which then generally depends on the chosen cover
(Ui)i∈I as indicated by the notation Hq(Ui, F ).

A 0-chain (fi)i∈I satisfies (fi) ∈ Z0(Ui, F ) if and only if fi|Ui∩Uj
= fj|Ui∩Uj

. Since

B0(Ui, F ) is implicitly understood to be 0 (one can freely attach zero maps to the left of
the cochain complex), Z0(Ui, F ) is (isomorphic to) the zeroth cohomology group. If F is
a sheaf, then we can glue the fi to a global section f ∈ F (X) with f |Ui

= fi for all i ∈ I.
This construction yields a group isomorphism Z0(Ui, F ) ∼= F (X).
We summarize this result.

Proposition 7.13. Let X be a topological space with an open cover (Ui)i∈I and F a
sheaf on X. Then Z0(Ui, F ) ∼= F (X), so in particular the zeroth cohomology group is
independent of the chosen cover (Ui)i∈I .

We are only interested in the first cohomology group H1(Ui, F ).
Let (fi,j)i,j∈I ∈ C1(Ui, F ). Then (fi,j) ∈ Z1(Ui, F ) if and only if it satisfies the cocycle
condition

fi,k = fi,j + fj,k on Ui ∩ Uj ∩ Uk ∀ i, j, k ∈ I.

In particular, this implies that fi,i = 0 and fi,j = −fj,i.
Similarly, (fi,j) ∈ B1(Ui, F ) if and only if there exists a 0-cochain (gi) ∈ C0(Ui, F ), such
that fi,j = gj|Ui∩Uj

− gi|Ui∩Uj
for all i, j ∈ I.

Our next goal is to show that the first homology group with coefficients in the sheaf
C∞ of C∞-functions is zero on any Riemann surface. Here being a C∞-function is defined
just like for ordinary smooth manifolds.
For this, we require the following lemma.

Lemma 7.14 (Existence of Partitions of Unity).
On every complex manifoldX with an arbitrary open cover (Ui)i∈I , there exists a (smooth)
partition of unity ; i.e. functions (ψi)i∈I ∈ C∞(X,R) , such that for all i ∈ I, we have
im(ψi) ∈ [0, 1], supp(ψi) ⊂ Ui,

∑
j∈I ψj = 1 and so that every point x ∈ X admits a

neighborhood intersecting supp(ψi) for only finitely many i ∈ I.

Theorem 7.15. For a Riemann surface X, the first cohomology group H1(Ui, C
∞) of

the sheaf of smooth functions C∞ is zero for any open cover (Ui)i∈I .

Proof. Let (fi,j)i,j∈I ∈ Z1(Ui, C
∞) be a 1-cocycle. We have to construct (gi)i∈I ∈

C0(Ui, C
∞) with δ(gi) = (fi,j). By Lemma 7.14, there exists a partition of unity (ψi)i∈I

on X. Then ψj · fi,j can be interpreted as a smooth function on Ui (it is zero on Ui \ Uj,
where fi,j is not defined). It follows that the function gi :=

∑
k∈I ψkfk,i is well-defined

(plugging in any point yields a finite sum) and satisfies gi ∈ C∞(Ui,R). Thus the claim
follows from the calculation (using the cocycle condition)

gj|Ui∩Uj
− gi|Ui∩Uj

=
∑
k∈I

ψkfk,j|Ui∩Uj
−
∑
k∈I

ψkfk,i|Ui∩Uj

=
∑
k∈I

ψk(fk,j − fk,i)|Ui∩Uj
=
∑
k∈I

ψkfi,j = fi,j.
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To show that the first cohomology group with coefficients in the sheaf O of holomor-
phic functions is zero on C, we need another lemma.

Lemma 7.16 (Dolbeault). For any h ∈ C∞(C,C), there exists g ∈ C∞(C,C), such
that h = ∂z̄g.

Theorem 7.17. For the complex plane C, the first cohomology group H1(Ui,O) of the
sheaf of holomorphic functions O is zero for any open cover (Ui)i∈I .

Proof. Let (fi,j)i,j∈I ∈ Z1(Ui,O). Because Z1(Ui,O) ⊂ Z1(Ui, C
∞), Theorem 7.15 yields

the existence of a 0-cochain (gi)i∈I ∈ C0(Ui, C
∞) satisfying fi,j = gj|Ui∩Uj

− gi|Ui∩Uj
for

all i, j ∈ I. Because fi,j ∈ O(Ui∩Uj), we have ∂z̄fi,j = 0 and thus ∂z̄gi = ∂z̄gj on Ui∩Uj.
Therefore, there exists h ∈ C∞(C,C), such that h|Ui

= ∂z̄gi for all i ∈ I.
By Lemma 7.16, we can find g ∈ C∞(C,C), such that h = ∂z̄g. Then fi := gi − g|Ui

∈
C∞(Ui,C) satisfies ∂z̄fi = 0, so it lies in O(Ui). Finally, the observation fj|Ui∩Uj

−
fi|Ui∩Uj

= fi,j shows that δ((fi)) = (fi,j).

Finally, we turn to the sheaf of meromorphic functions M.

Definition 7.18. LetX be a Riemann surface with open cover (Ui). A 0-cochain (fi)i∈I ∈
C0(Ui,M) is called a Mittag-Leffler distribution, if δ((fi)) is a 1-cochain in the sheaf
of holomorphic functions O; i.e. if fi − fj ∈ O(Ui ∩ Uj) for all i, j ∈ I.
A solution of a Mittag-Leffler distribution (fi)i∈I is a meromorphic function f ∈
M(X), such that f |Ui

− fi ∈ O(Ui) for all i ∈ I.

By definition, δ((fi)) = 0 ∈ H1(Ui,M) for any 0-cochain (fi)i∈I ∈ C0(Ui,M). How-
ever, if (fi)i∈I is a Mittag-Leffler distribution, then δ((fi)) ∈ C1(Ui,O) and we can ask
whether it is zero in the corresponding cohomology group H1(Ui,O). This turns out to
be equivalent to the Mittag-Leffler distribution (fi)i∈I having a solution.

Theorem 7.19. Let X be a Riemann surface with open cover (Ui). A Mittag-Leffler
distribution (fi)i∈I has a solution if and only if δ((fi)) = 0 ∈ H1(Ui,O).

Proof. If f ∈ M(X) is a solution of (fi)i∈I then gi := fi− f |Ui
∈ O(Ui) satisfies gj − gi =

fj − fi on Ui ∩ Uj, showing that δ((gi)) = δ((fi)) ∈ C1(Ui,O).
On the other hand, assume that δ((fi)) = 0 ∈ H1(Ui,O); that is, there exists a 0-cochain
(gi)i∈I ∈ C0(Ui,O), such that fj−fi = gj−gi on Ui∩Uj for all i, j ∈ I. In other words, we
have fi−gi = fj −gj on Ui∩Uj for all i, j ∈ I. Because M is a sheaf, these meromorphic
functions glue to a global meromorphic function f ∈ M(X), such that f |Ui

= fi − gi for
all i ∈ I and this f is a solution of the Mittag-Leffler distribution (fi)i∈I .

This theorem together with Theorem 7.17 shows that every Mittag-Leffler distribution
on C has a solution and one can show that the same holds true for the Riemann sphere
Ĉ.
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Basel, 2016. isbn: 978-3-0348-0973-3.

[FL94] Wolfgang Fischer and Ingo Lieb. Funktionentheorie. 7th ed. Wiesbaden: Vieweg
+ Teubner Verlag, 1994. X, 275. isbn: 978-3-528-67247-8.

[For81] Otto Forster. Lectures on Riemann Surfaces. 1st ed. Vol. 81. Graduate Texts in
Mathematics. New York, NY: Springer, 1981. VIII, 256. isbn: 978-1-4612-5963-
3.

[JS87] Gareth A. Jones and David Singerman. Complex Functions: An Algebraic and
Geometric Viewpoint. 1st edition. Cambridge Cambridgeshire ; New York: Cam-
bridge University Press, Mar. 27, 1987. 360 pp. isbn: 978-0-521-31366-7.

[RS07] Reinhold Remmert and Georg Schumacher. Funktionentheorie 2. 3rd ed. Springer-
Lehrbuch. Berlin, Heidelberg: Springer, 2007. isbn: 978-3-540-40432-3.


	Preliminaries
	The Riemann Sphere
	Topological Properties of the Riemann Sphere
	Complex Analysis on the Riemann Sphere

	Elementary Transcendental Functions
	Holomorphic Extensions
	Periodic Functions
	The Complex Logarithm
	Complex Roots

	Homology in the Complex Plane
	The Cotangent Space
	Differential Forms
	The Cauchy Integral Theorem for differential 1-Forms

	Holomorphic Functions with prescribed Zeros and Poles
	Infinite Products
	The Mittag-Leffler Theorem
	The Weierstrass Factorization Theorem

	The Riemann Mapping Theorem
	The Topology of Compact Convergence
	Compact Convergence
	Univalent Functions
	The Riemann Mapping Theorem

	Sheaf Cohomology in the Complex Plane
	Sheaves
	Riemann Surfaces
	Čech Cohomology


