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on the book A Course in Commutative Algebra and all references within this document
refer to that book.



Hilbert’s Nullstellensatz

Remark 1. (a) It is important to know the difference between being generated as a
module, ideal, group or algebra.

(b) We define a R-algebra A as a ring with a homomorphism « : R — A. Another
equivalent definition is that A is an additive abelian group, that is both a ring and
a R-module. These definitions are equivalent:
If « is given, we define the scalar multiplication for A € R,a € A as A-a = a()) - a.
If the other definition is given, we define a«: R — A by A — X - 1.

(c) For a K-algebra A, K a field, the corresponding homomorphism is injective and
thus it is natural to think of K as being embedded into A.

(d) For a R-algebra A, a R-algebra homomorphism A — A is also a R-module homo-
morphism, but not a A-module homomorphism as the example R = Z, A = Z[z],
Zx] — Z[z], x — 0 shows.

(e) Our varieties are called affine, because there are also other types of varieties, e.g.
projective varieties.

(f) It is important to remember that any nonzero polynomial in K[z]| only has finitely
many roots, but for K|x,y] or larger polynomial rings, this is not true (e.g. f =
x —y € K[z,y] with K an infinite field).

(g) Any finite subset S C K™ is an affine variety and for n = 1 those are the only affine
varieties except for K itself.

(h) Tt holds for any ideal I C K[x1,...,z,): V(I) = V(V/I).

Lemma 2. Let R C S C T be rings, such that S is finitely generated as an R-algebra
and T is finitely generated as an S-algebra. Then T is finitely generated as an R-algebra.

Proof. Write S = R[s1,...,8,], T = S[t1,...,tm]. Let 2 = s-[]" t9 € T with s €

Jj=1%j
S,i; € N and s = ZZ:1 rn [ L= s;j with r, € R,7; € N. Plugging this into z shows
2z € R[sy,...,8n,11,...,tn] and because every element in T is a finite sum of elements of
the form of z, this shows T'= R[sy1, ..., Sp,t1,. .., tm]. O

Lemma 3. A K-algebra A with dimg(A) < oo is algebraic over K.
We give two short proofs.

Proof. Let n = dimg(A). Then any K-linearly independent set has at most n elements.
Thus for any a € A, the set {1,a,a?,...,a"} must be linearly dependent, which gives us
a polynomial with coefficients in K and a as a root. O]

Proof. By contraposition, assume that A is not algebraic, i.e. there is a € A, which is
not algebraic over K. Then the monomorphism (injective homomorphism) of K-algebras
(and in particular of K-vector spaces)

¢: Kzl = A, f = fla)
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shows that
dimg(A) > dimg(im(¢)) = dimg (K[x]) = oo.
[
Lemma 4. Let K be a field. If S C Klxy,...,x,] is a set of polynomials, then V(S) =

V((S)). Moreover, if I = (f1,..., fm) C K[z1,...,2,] is a finitely generated ideal, then
V(I)=V(f1,..., fm), 1.e. the vanishing set is determined by the generators.

Proof. Both statements follow directly from the definition, since any element in (.5) is
a K-linear combination of elements of S and similarly every element in I is a K-linear
combination of the f;. m

1.1 Some K-algebra examples

Find examples of a K-algebra A, such that:
(a) A is an integral domain (ID), but not a field.

(b) A is algebraic over K but not a field.
(c) A is a field but not algebraic over K.
)

(d) A is an affine K-domain (finitely generated K-algebra, that is an ID), but
not algebraic over K.

When we don’t specify the corresponding homomorphism, we always mean the natural
inclusion.

() A= K[z
(b) Three solutions:

(1) A =0: The easiest solution is the zero ring.

(2) A = K[z]/(2*): This is not an ID (z -z = 0) and thus not a field, but it is
algebraic over K. This can be seen by taking an element a + bx and finding a
polynomial of degree two that has that element as a root.

It also follows directly from [3] since A is a 2-dimensional K vector space.

(3) A = K*?: The ring of 2 x 2 matrices with coefficients in K is clearly not
a field, but it is algebraic, since for M € A, its characteristic polynomial
g(x) = det(z - I, — M) satisfies g(M) = 0 by Cayley-Hamilton.

1.2 @) as a Z-algebra

Prove that @ is not finitely generated as a Z-algebra.




Given finitely many rational numbers Z—i, ey %, there is a prime number p € Z, which
does not divide any of the ¢;. Thus ]lj & Q[fl’—i, B

? gn

1.3 Properties of the radical operator

Let R be a ring and [ C R an ideal.
(a) Show that /T is an ideal and that v/+/T = /1.

(b) Show that a prime ideal is radical.

)
)

(c¢) Determine VI for I = (12) c Z and I = (0) C Z/4AZ.
)

(d) Give an example of a proper ideal in Z that is radical but not prime.

(a) and (b) follow quickly from the definition.
Since Z is a principal ideal domain (PID), any ideal is generated by one element. In 7Z,
the radical ideals are those, whose generator has no prime factor more than once.
Thus, in (c) we find that 1/(12) = (6) C Z and /(0) = (2) C Z/4Z.
Using (a) and (c), we know that (6) C Z is a radical ideal, but of course it is not prime,
so (d) is done.

1.4 Some (potential) affine varieties

Check if the following subsets of C? are affine varieties or not by determining a
subset S C Clz, y] such that X = V(S) or proving that such a set cannot exist.
(a) X = {(z.9) € C*: z =y or & = —y}

b) X ={(z,y) € C? : 2 # 0 and y = 2}

€eC?:z=0andy e {0,1,2}}

(#,9)

={z,y) eC:o#0andy = +2°}
(z,9)
(z,9)

={(z,y) € C*:z=0and y € Z}

(a) S ={(z+y)z—y)}
(b) This is not an affine variety. We give two proofs:

(1) Since any polynomial f is continuous, the set f~1(0) is closed. As an intersec-
tion of closed sets, V(S) must be closed as well, but X is not.

(2) Aiming for contradiction, assume that X = V(5).
Since X # C?, it is S # (0, so let f € S. It holds f(z,y) =0V (z,y) € X. In
particular, f(z,2?) =0V z € C\ {0}. With the C-algebra homomorphisms

¢: Clr,y] = Clz], x> x, y s 27,



f(x, 2?) can be seen as a polynomial in C[z], namely as its image ¢(f). If ¢(f)
were non-zero, it could only have finitely many roots, thus ¢(f) = 0. The
commutative diagram

Cle, y] *—— Cla]
eval(oyo)
evalg
C

£(0,0) = eval,)(f) = (evalo 09)(f) = ¢(f)(0) = 0.
Since f was generic in S, it follows (0,0) € V(S) = X. Contradiction.

shows that

(c) Since
1
y=—+22 040 <= zy=1+2°
x
we can choose S = {zy — 2 — 1}.

(d) S={z,y(y—1)(y—2)}. One can show that since C is algebraically closed, a single
polynomial will not be enough here.

(e) This is not an affine variety. The argument is similar to that of (b). A polyno-
mial with f € C[z,y] with f(0,2) = 0 for all z € Z corresponds to a polynomial
f(0,—=) € Cly], which has infinitely many roots and thus must be the zero polyno-
mial, implying {0} x C C V(f).

1.5 The ring of formal power series

Let K be a field and R := K[x] the ring of formal power series over K.
(a) Show that R is an integral domain.

(b) Show that the group of units in R is given by

R* = {Zaixi €ER:ag# 0}.
i=0

(c) Show that (z) C R is the only maximal ideal.
(d) Show that the Laurent power series ring
L=K((z)) = {Zaixi :m € Z,a; € K}
is a field and is isomorphic to Quot(R).
(e) Show that L = R[z™'].

(f) Is R finitely generated as a K-algebra?
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(a)

Assume 0 = (37 ax’) - (3o bix') and a; # 0 for some ¢ € N. Choose k € N
minimal, such that a; # 0. We want to show that b; = 0 for all i € IN. It is

(S oS ()

=0 \j=0 =0 \j=k

We use induction on n.
Base base: Considering the coefficient of z*, we get azby = 0, so by = 0.
Inductive step (n—1 ~» n): Considering the coefficient of 2"**, we get by induction

n+k

0= Z ajbn+k_j = akbn,

=k

showing b,, = 0.
Alternatively, one can use contraposition; if f,g € R are nonzero, then f - g is
nonzero by the same calculation as above.

Let f =3 ", a;z" € R. It holds f € R* if and only if there is > ;- b;z* € R with

1=0 =0 i=0 \j=0

Comparing coefficients, this is equivalent to

n

aobo =1 A Vne IN>0 : Zajbn_j =0.

j=0

In particular, it follows ag # 0. Moreover, that condition is also sufficient for
f € R*: Defining recursively

bo=ag', Vn € Nog: by = (—ag") - Y ajby
j=1

gives Y o2 bz’ € R with the desired property.

Let I C R be a proper ideal and let a = Y ° a;z* € I. By (b), it is ag = 0, so

o0

[e.9]
a= E a;x' = - E a2’ € (),
=0

i=1
showing I C (x). It is clear that (x) # R, so (z) is the only maximal ideal of R.

First, we show that L is a field. One possibility to do so is the following:
Let 0 # f =50 a;x' € L and m € Z minimal with a,, # 0. Then

o0 o0
" f=aT" E a;x' = E airmx’ € R*
i=m =0

by (b) and thus there is g € R with (32 ai1ma") - g = 1, implying f -2 "g = 1.
Another proof, which is more tedious, goes as follows:



Let 0 # Y .2 a;x* € L and choose m € Z minimal, such that a,, # 0. As in (b),
we need to construct an inverse; i.e. Y > b’ € L, b,y # 0 with

1= (iaz) : (iﬂ bx) = i (i ajbij) zt = i (iﬂ ajbi]) .

1=—00 \J=—00 i=—o00 \j=

Comparing coefficients, this means that

/

Zajb,jzl VAN VTLGZ\{O} Z ajbn,j:().
j=m

j=m

In particular, choosing n = m +m’ shows m’ = —m. Thus, the previous expression
is equivalent to

n—+m
Amb_y =1 N ¥Yn e N\ {0} : Zajbn_j =0
j=m
or equivalently
n+m
bom =a,! AN VneN\{0}:b_ i, =(—a,})- Z ajb,_;.
j=m+1

This defines Y v bz’ € L with the desired properties and L is thus a field.

Both proofs also shows that any element 0 # f = > ° a;a' € Lisin R, or is a
multiplicative inverse of some element of R. This suggests that L is the “smallest”
field that contains R and motivates L = Quot(R), which will be proven more
formally now. There are again multiple ways to do so:

For one, we can show that L satisfies the universal property of the quotient field
Quot(R): For any field K and any injective ring homomorphism ¢ : R < K, there
is a unique ring homomorphism f : Quot(R) — K, such that the diagram

R —— Quot(R)

commutes.

We see that L indeed satisfies this property, because a ring homomorphism L — K
commuting as in the above diagram is uniquely determined by g : R — K, since
any element in L is in R or is a multiplicative inverse of an element in R.

Another proof is to show that the ring homomorphism

¢ Quot(R) — L, gr—>f-g_1

is an isomorphism.
As a ring homomorphism between fields, ¢ is injective. For f € L, we know that
fe€Ror f7' € R, so ¢ is surjective.



(e) “C”: Let f=> ax' € L. Then
f=am- Z a;xt™™ = g™ . Z Qiymz" € R[z7Y]
i=m =0

so L C R[z71].
Another way to see the same thing:

oo -1 0
f=)Y aa' = a () +> aa’ € Rz
R

“O7: Let f =Y "y ma~ € Rlz=],r; € R. For every i € N, it is ;2" € L, so
f€Land Rlz7'] C L.

(f) Arguing by contradiction, suppose that R was finitely generated as a K-algebra.
By (e) and [2] this implies that L is finitely generated as a K-algebra. Lemma 1.1(b)
shows that L is thus algebraic over K, which is wrong, since x € L. Contradiction.
One could also argue further after the application of lemma 1.1(b) and note that
R is algebraic as well and thus by application of lemma 1.1(a) conclude that R is a
field, which is clearly wrong.

1.6 Maximal spectrum and Rabinowitsch spec-
trum
(a) Show for any ring R:
R) C Spec,,,(R).

max (

Spec

(b) Consider the formal power series ring R := K[y] in the indeterminate y over
a field K. Furthermore, let S := R[z] be the polynomial ring over R. Show
that in S the inclusions

S) g Specrab(s> g SpeC(S)

max (

Spec

are strict by considering the ideals (y)g, (2)s-

(a) We give two proofs, the first of constructive nature, the second using the axiom of
choice. Consider the surjective R-algebra homomorphism

¢: Rlx] = R, x— 0.

and let I € Spec,,, (R) be a maximal ideal. The preimage ¢~ *(I) is a maximal
ideal in R[z], so I € Spec,,;,(R) follows from

[={I+z Rz]}nR=¢""(I)NR.



Alternatively, one can argue as follows: 3 3
For I € Spec,,,«(R) a maximal ideal, there is I € Spec,,(R[z]) with [ C I by
Zorn’s lemma. It holds I N R = i~ *(I) € Spec(R), where i : R — Rlx] is the

inclusion map. Since also I C I N R, we conclude I = I N R and I € Spec,,,,(R).
(b) Consider the surjective K-algebra homomorphism
¢ (KyDlzl = Klz], y = 0
with kernel (y)s. The homomorphism theorem shows S/(y) = K|z, so (y) €

Spec(9).

To show (y)s & Spec,,,(S), let I D (y)s be a maximal ideal in S[z’]. Then S[2']/I is
a field and since y € I, S[2']/1 is finitely generated as a K-algebra (namely by Z and
2'). Lemma 1.1(b) shows that S[2/]/I is algebraic over K, so there is a polynomial
f € K[z] \ {0} with f(z) € I. Since f(z) € S\ (y)s, it follows I NS 2 (y)s and
thus (y)s & Spec,ap(S)-

Clearly (2)s & Spec.«(5), because S/(z) = R = K[y] is not a field.

It is left show (2)s € Spec,,;,(S). A maximal ideal I D (2)gp. in S[2] corresponds
to a maximal ideal 1" C S[2]/(2)s.1 = (K[y])[#']. Quotienting by I’ has to yield a
field, and y and 2’ are both lacking inverses, so it is natural to define the algebraic
relation y-2' := 1; i.e. to consider I' := (y-2'—1). Now (K[y])[2']/I' = (K[y])[y~"],
which is the ring of formal laurent series and in particular a field.

Therefore, I' C (K[y])[z] is maximal and sois [ = (I',z) = (y- 2’ — 1,2) C S[¢].
It follows (z)s = I NS and thus (2)s € Spec,,;,(S).

1.7 Characterization of Jacobson Rings

Show that a ring R is Jacobson if and only if every prime ideal P € Spec(R) is an
intersection of maximal ideals.

Since any prime ideal is radical, it is clear that every Jacobson ring has the claimed
property.
On the other hand, suppose that every prime ideal P € Spec(R) can be written as an
intersection of maximal ideals and let I C R be an ideal. Since v/I is equal to the
intersection of all prime ideals containing I and every prime ideal is by assumption equal
to an intersection of maximal ideals, v/I can be written as an intersection of maximal
ideals, which contain I. Consequently,

ﬂ mC\/f

meSpec,, ., (R),ICm

and the other inclusion is clear.



1.8 Some Jacobson rings

(a) Is K[z] Jacobson?

(b) Is Z Jacobson?

(c) When are local rings (rings with exactly one maximal ideal) Jacobson?
)

(d) When are principal ideal domains Jacobson?

(a) No, as it is
(0) = (0) # (z) = N

since (z) is the only maximal ideal in K[z].

(b) Yes. Clearly, it is /(0) = (0) = pespec,. (7 £- Since Z is a principal ideal

max

domain, it is Spec,,,.(Z) = Spec(Z) \ {(0)} and thus for I # (0):

Vi= [ P= N P.

PeSpec(Z),ICP PeSpec,, . (Z),ICP

(c) Since local rings only have one maximal ideal, they are Jacobson, if and only if that
maximal ideal is the only prime ideal.

(d) Just as in (b), we know that /T = Npespec. . 1cp s for all ideals I # (0). So the
only potential problem is the zero ideal. This means that principal ideal domains
are Jacobson, if and only if (Vpcgye. P = {0}

max

1.9 Maximal ideals of an algebraic field extension

Let K C L be an algebraic field extension and I C L[z] be a maximal ideal. Prove
that J := I N K[z] is a maximal ideal in Kz].

Consider K[z| — L[z| — L[z|/I. L[z]/I is a field and finitely generated as an L-
algebra, so it is algebraic over L by lemma 1.22(b). Since K C L is an algebraic field
extension, L[x]/I is algebraic over K. Using the monomorphism

¢:Klx|/J— Liz|/I, f+J— f+1

it follows that Klz]/J is also algebraic over K. ¢ also shows that K[z]/J is an integral
domain. Alternatively, notice that with ¢ : Klx] < L[z], it is J = ¢ }(I). By lemma
1.22(a), K[z]/J is a field.



1.10 A Counterexample to the Nullstellensatz

Consider the polynomial f(x,y) = z*—y* € R[z, y| and the ideal I = (f) C R[z, y].
Determine the set V(1) C R
Does the second form of the Nullstellensatz hold here, i.e. is I(V (1)) = VI?

Since
fla,y) =2 —y' = (@* +y*)(a® — y°) = (& + y*)(z — y)(z + ),
it is (due to [4))
VI =V(@*+y)UV(z—y)UV(z+y) ={(r,y) e R*x =y or x = —y}.
Thus
(VD) =I({(z.y) e R*lx =y or v = —y}) = (x —y) N (z +y) = (2 — y*) C R[z,y].

It is clear that f(z,y) = (2* + 3?)(z — y)(x + y) C R[z,y] is a decomposition into
irreducible polynomials. Therefore VI = I, i.e. I is radical. This shows that I = =

(zt —y") € (2% —y?) = I(V(I)).

1.11 Colon Ideals

Let R be a ring and I,J C R two ideals. We define the colon ideal (or ideal
quotient) via
I:J={a€R:abeclIV beJ}.

Prove the following:
(a) (I:J)-JcIcClI:J.

(b) VI :J=\pey P> where M := {P € Spec(R): I C P,J ¢ P}.

(c) The geometric content of the ideal quotient is that it gives the ideal of the

complement of a subvariety.
More precisely, let K be a field and X,Y C K" be two subsets. If Y is an

affine variety, then I(X) : I(Y) = I(X \ Y).

(d) Without the assumption of affineness of Y the previous statement is not true,
i.e. find a counterexample for that case.

(a) Let a € (I : J)-J be a generator of that ideal, i.e. we can write a = b - ¢ with
bel:Jandce J. By definition of I : J, it followsa € I, s0 ({ : J)-J C I.
Now let a € I. Thenb-a €l foranybe J,soacl:Jand I C1I:J.

(b) “c”: Let a € VI : J and P € M. By definition, there is b € J\ P. Since
ab e /I C P and P is prime, it follows a € P.
“D”: Let a € (\pey P and b € J. Additionally, let Q) € Spec(R) be a prime ideal



with I C Q. If JC Q,thenbe Q,s0abe Q. If JZ Q, then Q € M, soa € Q,
thus ab € Q.
Because V1 = Naespec(r).1cq @ by Corollary 1.12, it follows ab € VT, ie.

aecI:J.

(¢) “C”: Let f e I(X):I(Y)andp € X\Y. By assumption, f(p)-g(p) =0V g € I(Y).
Since p ¢ Y and Y is an affine variety, there is g. € I(Y) with g.(p) # 0. Thus
f(p) - 9.(p) = 0 implies f(p) =0, Le. feI(X\Y).

“D7: Let f € I(X \'Y). By definition, f(p) =0V p € X\ Y. Thus, for any
g€ I(Y) it holds f(p)-g(p) =0Vpe X,s0 feI(X):I(Y).

(d) Let K=C,n=1, X =Cand Y = Z. Then I(X) = I(Y) = I(X \Y) = {0}. But
I(X): 1(Y) = Clx].

1.12 Affine varieties in non-algebraically closed
fields

(a) Let K be a field and p € K[z] a non-constant polynomial of degree d, which
has no zeros in K. Let f,g € K[xy,...,x,] and define h = p(g) gt €
Klzy,...,z,). Prove that V(f,g) = V(h).

(b) Let K be a field which is not algebraically closed and X C K™ be a finitely
generated affine variety, i.e. X = V(S) with S C Klxy,...,x,] finite.
Prove that there exists f € K|xy,...,x,] such that X = V(f).
Since Klzy,...,x,| is Noetherian (proven later), every affine variety can be
given by a finite set of polynomials. Therefore, for non-algebraically closed
fields, every affine variety can be given by a single polynomial.

(a) Write p = Z?:o a;z’ with a; € K. Then h = Z?:o a; flg .
“c”: Let x € V(f,g),1e. f(x)=g(x)=0. Thus h(z) =0.
“37: Let x € V(h), i.e. h(z) = 0. Since p has no roots in K, it follows g%(z) = 0,
i.e. g(x) = 0. This means that 0 = h(z) = 3.0, aifi(x)g" " (z) = aaf*(z) with
aq # 0, s0 f(z) =0 as well.

(b) Write X = V(fi,..., fm). Since K is not algebraically closed, there is a non-
constant polynomial p € Klz], which has no zeros in K. By (a), there exists
hy € K|x] such that V(f1, fo) = h1. Repeating this argument inductively, we get

V(fi, oo fm) =V(hi, for oo fn) = V(hay far ooy frn) = oo = V(hm).



1.13 A generalization of Hilbert’s Nullstellensatz
Let K be a field, K its algebraic closure and I C K|z, ...,z,] an ideal. Show that
]K[zl ..... xn](vf("(])) = \/7

In this notation, the subscript denotes where the ideal lives or the vanishing takes
place.

The proof of this statement is involved, because I is not necessarily an ideal in

Klzy,...,2,).

Set J == (I)gay,...zn]- Since K[y, ..., 2,] C K[zy,. .., 7,], Hilbert’s Nullstellensatz yields

Iktereend (Vin (1) = Igppy e (Ve (D) N Ky, 2] = VIO Ky, ]
So we need to show:
VINKzy,. .. x,) = VI. (1)
We will show the slightly stronger statement
JNK|xy,...,x,] =1, (2)

which implies (1). We give two different arguments for the inclusion “C”, the other
inclusion “D” is trivial.

(a) Let f € JN K[zy,...,2,]. Because J = (I)gp, ... 4, We can write f = S kiay
with k; € Klzy,...,2,], a; € I. Since K is a K-vector space, we can choose
a K-basis B = (b;);c; with I an index set and 1 € B. Notice that this is also a
Ky, ..., z,)-basis of K[z1,...,x,], when we view K[zy,...,2,] asa K[z1,...,2,)-
module. It follows with a; € I, k; € K[zy,. .., 2], kij€ Klzy, ...,z

Since the b; form a K|x1,...,z,]-basis of K[zy,...,,] one of the b; must be 1, so

this implies
<00
f= Z ki jaq,
i=1

which shows that f € I and thus (2), because I is an ideal in K[xq,...,z,].



(b) Let f € JN Klzy,...,7,). Then there exist gi,...,gm € I and hy,... hy €

Klzy,...,x,], such that f=>"" gh;.

For intuition, we first consider the special case K = R, K = C: Define v :
Clz1,...,x,] = Rlxy, ..., z,] by taking the real part of each coefficient.

This mapping has the following properties:

e U(f+g)=v(f)+Y(9)

e VfEKlry,...,v,),9€ K[xy,...,20] :0(g- f) =g-¥(f).
Note that because of the linearity, it is enough to show this property for a
monomial f € K[zy,...,z,] and for those it is clear.

b w’K[m ----- o id.
This follows from the previous point, since for all g € K[z1,...,x,]:

V(g)=v(1-g)=g-¥(1)=g.

The first two properties make 1) a homomorphism of K[xy,...,z,]-modules. The

idea is to write
m

= ghi=> aR(hi)+i->_ aS(h),
i=1 i=1 i=1
where the second part vanishes because f € K[z1,...,x,],s0 f =>" gR(h;) € I.
Now we generalize the argument. Notice what we did: We extended the R-vector
space homomorphism R : C — R, a + ib — a to a homomorphism of R[zy, ..., x,]-
modules. The properties from R that we used were:

e dla+b)=¢(a)+¢(b)V a,bc K.

e dla-b)=a-¢(b)V ac K,be K.
In other words, we want a homomorphism of K-vector spaces ¢ : K — K, which
satisfies ¢|x = id. Notice that R is nothing but a projection onto the first compo-
nent when viewing C as an R-vector space with basis {1,7}. In the same way, we
get our mapping ¢ in the general case:
Since {1} is a K-basis of K (viewing K as a vector space over itself), we can extend

it to a K-basis B of K. Since it is enough to define a K-linear map on a K-basis,
we get a K-linear map

1 ifb=1

0 otherwise

¢:K—>K,br—>{

for b € B. It is clear that this ¢ has the properties we want, so we can extend it to
a homomorphism of Klz1,...,z,]-modules ¢ : Klxy,...,z,| = Kl[z1,...,x,] with

Similar to the special case, we argue:

m

F=0(f)=> v(gh) = Zgﬂb(hi) el

=1



Noetherian and Artinian Rings

Remark 5. (a) There are modules that have no basis, for example, the Z-module

(b)

(c)

(d)

(e)

Z,/27.. This is because 2 -1 = 0, so the set {1} C Z/27Z is linearly dependent.

For a field K with algebraic closure K, let a € K, f € K|x] minimal polynomial of
a. Furthermore, let g € K|x1,...,z,| with g(a,...,a) = 0.
This does not imply that f|g, as the following example shows: For K = Q, n = 2,
a=+/2, it is f = 22 — 2, which does not divide g = = — .

We know that:

Field = Euclidean Ring = PID = UFD (Factorial Ring) = ID
It additionally holds that:

e Field = Artinian.

e Artinian = Noetherian.
e Artinian = Jacobson.

e ID = reduced ring.

For a ring R and an ideal I C R, the quotient ring R/I is reduced if and only if [
is a radical ideal.

Any abelian group G (with addition as its operation) can be made a Z-module by
defining multiplication as

VeelZ,geG:z-g=g+---+g.
oo
On the other hand, given a Z-module M, we can simply extract its abelian group.

Because of the module axioms, these two operations are inverses to one and another.
This means that abelian groups and Z-modules are in 1:1-relation.

A ring R is called graded, if it has a direct sum decomposition

R=Ry®R ®Ry @ =P Rq

deN

as an abelian group, such that
Ya e Rl,b € Rj cab e Ri+j.

An element of Ry is called homogeneous of degree d.

Notice that Ry is a ring and the R; are Ry-modules. A standard example is R =
K|z, ..., x,], where Ry is the space of homogeneous polynomials of degree d (i.e.
all monomials have degree d).

So for instance in R[z,y|: 2zy, —bx? + 6zy € Ry.



(g) Another example of a graded ring: Let K be a field and G C GL,(K) be a subgroup
of the general linear group. Define a group action of G on K™ as follows:
Foro € G, f € K[zy,...,x,], v € K™ set

(0.f)(v) = f(o™"v).
Then the ring of invariants is defined as

Klzy, ... 2,9 ={f € K[z1,...,2,] : Vo € G:o(f) = f}.

(h) The image of an affine variety under a morphism of varieties is not necessarily an
affine variety. Consider e.g. the projection onto the first component V(zy — 1) —
K'. The image is K' \ {0}, which is not an affine variety.

Lemma 6. Let X be a set and f: X — X a function. If there is n € Ny such that f"
is bijective, then f is bijective.

Proof. The inverse of f is f* 1
fofn_lzfn:fn_lof. 0

2.1 A non-Noetherian Ring

Let K be a field and R = K[z, y| be the polynomial ring in two variables. Define
the K-subalgebra of R

S =K+ Rx = K[z, zy, vy*, xy®,...].

Show that S is not Noetherian.
Since K|[z,y| is Noetherian, this shows that a subring of a Noetherian ring need

not be Noetherian.

Forn € N, set I, == (z,zy,...,zy") C S. Then I, C I,,,1 V n € N, since zy"* & I,,.
Thus the [,, form an infinite, strictly ascending chain of ideals, so S is not Noetherian.

2.2 An Artinian Module that is not Noetherian

Let p be a prime number and define the Z-module
1 a
Zp~—] = EGQ:aEZ,nG]N

and M = Z[p~']/Z.
Prove that M is Artinian but not Noetherian as a Z-module.

For clear notation, we write ¢ for the equivalence class 7 + 7 € M and choose the
unique representative in [0, 1) with ged(a,b) = 1.



Let 0 # & € M be an element. The submodule it generates is () = {k wlk € Z}

and it is clear that any element in that submodule will have a denominator smaller or
equal to p". Since ged(a, p™) = 1, Bezout’s identity yields

de,y€Z:xa+yp" =1,

so bra + byp™ = b and thus (bz) - - = [% for any b € Z. Since this holds for any
a € 7\ {0}, it shows that

(3)-()-{epemss)

Hence, for a submodule N C M there are two cases: If max{n eN: [% S N} < 00,

then N = (#) and otherwise N = M. In other words, the proper submodules of M are

precisely of the form M, = (#) for n € IN.

Given a strictly decending chain Ny 2 Ny 2 ... of submodules of M, we know that
Ny = (p—ln) for some n € IN. But since that submodule only contains n different, proper
submodules, the chain must terminate. This shows that M is Artinian.

Of course, M is not Noetherian, as the infinite, strictly ascending chain My C M; C ...
shows.

Alternatively, notice that since Z is Noetherian, M is Noetherian if and only if Z[p™!] is
Noetherian (proposition 2.4). Moreover, Z[p~!] is Noetherian as a Z-module if and only
if it is finitely generated over Z (Theorem 2.10), which is not the case.

2.3 Noetherian Graded Rings

For R a graded ring, we define the irrelevant ideal as

Prove that the following are equivalent:
(a) R is Noetherian.

(b) Ro is Noetherian and I is finitely generated.

(¢) Ry is Noetherian and R is finitely generated as an Rg-algebra.

(a) “(a) = (b)”: The ring homomorphism ¢ : R — Ry, which projecs an element of R
to its Rp-component, is surjective and has kernel I, so by the isomorphism theorem
Ry = R/I. Since R is Noetherian, so is R/I (proposition 2.4). By theorem 2.9, [
is finitely generated.

(b) “(b) = (c)”: Write I = (f1,..., fn) with f; € I. By the direct sum property, we
can write f; = Y0 fi; with fi; € R; C 1. So I = (fi;|1 <i<n,1<j<my).
Claim:

R=Rylfi;1<i<n,1<j<m]=:85.



By the direct sum property, it is enough to show that any g € R homogeneous of
degree d is also in S. We use induction on d.

Ford=0,g€ Ry CS.

Let d > 0. Then g € I, so we can write

g= Y hily

1<i<n,1<5<m;
with h; ; € R. Since g is homogeneous of degree d and the sum is direct, it follows

9= > (hij)ajfis;

where (h); denotes the i-th component in the direct sum decomposition of h. By
the inductive hypotheses, (h;;)4—; € S,s0 g € S.

(¢) “(c) = (a)”: This follows directly from corollary 2.12.

2.4 True or False: Noetherian/Artinian

Are the following statements true or false? Give a proof or a counterexample.
(a) Every Artinian module is finitely generated.

(b) If R is a ring such that R[z] is Noetherian, then R is also Noetherian.
(
(d

)
)
c) If a ring R is Artinian, then so is R[z].
) Every finitely generated module over a ring R is Noetherian.
)

(e) If R is a ring such that every finitely generated R-module is Noetherian, then
R is a Noetherian ring.

(a) False. Choose M as in[2.2] If M was finitely generated, it would be Noetherian by
theorem 2.10, since Z is Noetherian.

(b) True, since R = R[z|/(x) and R[z]| being Noetherian implies R[x]/(z) being Noethe-
rian by proposition 2.4.

(c) False, as any field K is Artinian, but K|[z] is not: (z) 2 (2?) 2 (%) 2 ....
(d) False, because any non-Noetherian ring R is finitely generated over itself R = (1).

(e) True. In particular, R is finitely generated as a module over itself.



2.5 Endomorphisms of Artinean and Noetherian
modules

Let R be a ring, M an R-module and f : M — M a homomorphism of R-modules.
(a) If M is Artinian and f is injective, then f is an isomorphism.

(b) If M is Noetherian and f is surjective, then f is an isomorphism.

(c¢) Give examples, which show that the assumptions “Artinian” and “Noethe-

rian” in (a) and (b) cannot be omitted.

(a)

Consider the descending chain of submodules
im(f) D im(f?) Dim(f*) >....

Because M is Artinian, there is n € Ny, such that im(f") = im(f?) for all i > n.
Consider the homomorphism ¢ := f", M — M, which is injective as a composition
of injective functions.

Suppose g was not surjective. Then there is = ¢ im(g) and g(x) € im(g), but
g(z) € im(g?), since otherwise there is y € M with g(g(y)) = g(z) so by injectivity
g(y) = x. Contradiction, because im(g) = im(g?).

Therefore, g is bijective and [6] yields the claim.

We argue similarly to (a). Consider the ascending chain of submodules
ker(f) C ker(f?) C ker(f*) C ....

Because M is Noetherian, there is n € Ny, such that ker(f™) = ker(f*) for all
1 > n. Consider the homomorphism ¢ = " M — M, which is surjective as a
composition of surjective functions.

Suppose g was not injective, i.e. there is 0 # x € ker(g). By surjectivity, there
is y € M with g(y) = z, so y € ker(g?), but y & ker(g). Contradiction, because
ker(g) = ker(g?).

Therefore, g is bijective and [6] yields the claim.

Let R be a nonzero ring and M = R|xy, Zs, .. .| be the polynomial ring in infinitely
many variables. The R-algebra homomorphism

M—)M, T1 > Lo, To > T3,T3 > Ty, ...

is injective, but not surjective and amounts to a R-module homomorphism M — M.
Similarly, the R-algebra homomorphism

M-)M, 1’1'—)O,$2’—>x1,$3|—>$2,

is surjective, but not injective and gives rise to a R-module homomorphism M — M.



2.6 More Rings

Find a ring that is...
(a) Artinian, but not a field.

(b) Noetherian, but not Artinian.
(c) Factorial, but not Noetherian.
)

(d) reduced, but not an integral domain.

(a) Any finite ring that is not a field will work, e.g. Z/47.
(b) Z.

)
)

(¢) The polynomial ring over a field with infinitely many variables K[z, xs,...].
)

(d) Z/6Z.

2.7 Idealization

For K a field and V' a K-vector space, we define the idealization R = K(+)V to
be the ring with the set R = K x V, addition (a,v) + (b,w) = (a + b,v + w), mul-
tiplication (a,v) - (b, w) = (ab, aw + bv), zero-element (0,0) and one-element (1, 0).
We want to show that this ring is Jacobson, but not Noetherian, if dimg (V') = oo.

Prove the following:
(a) Let U C V be a subspace. Then {0} x U is an ideal of R.

(b) If dimg (V) = oo, then R is not Noetherian. (The reverse direction is also
true.)

(c) {0} x V is a maximal ideal.

(d) {0} xV = /(0).

(e) R is Jacobson.

(a) Follows directly from the definition.

(b) If dimg (V) = oo, there exists an infinite, strictly ascending chain of subvector

spaces of V'
U CU,C ...

With (a), we get an infinite, strictly ascending chain of ideals of R:

Oy x U, C{OyxUsC....

(c) Consider the ring homomorphism ¢ : R — K, (k,v) — k. It is surjective and has
kernel ker(¢) = {0} x V. The isomorphism theorem yields R/({0} x V) = K, so



{0} x V is a maximal ideal.

Alternatively, one can also show this in a direct manner: Let I D {0} x V be an
ideal. Then there is (¢,v) € I'\ ({0} x V), so ¢ # 0. Then (¢,0) = (¢,v) — (0,v) € [
and thus 1 = (1,0) = (¢71,0) - (¢,0) € I.

Let (a,v) € {0} x V,ie. a = 0. Then (a,v) - (a,v) = 0, so {0} x V C /(0)g.

Since (1,0) € \/(0)r, v/(0)g is a proper ideal, so (c¢) implies {0} x V = /(0)g.
Alternatively, one can deduce {0} x V' O 1/(0)r from the fact that every prime
ideal contains the nilradical.

Since \/(0)r = Npespec(ry > it follows that Spec(R) = {{0} x V'} As a local ring
with its only maximal ideal also being the only prime ideal, R is Jacobson:

VI = ﬂ P = m m.

PeSpec(R),ICP MESpeC < (R),[Cm



The Zariski Topology

Remark 7. (a) The closure S of a set S C K™ with respect to the Zariski topology is
by definition the smallest closed subset 7' C K™ with S C T. So T' = V/(I) with
I C Klzy,...,z,] aradical ideal.
We have the explict formula S = V/(I(S5)), which is proven in [§]

(b) For X,Y C T subsets of a topological space T, it holds that

XNnYcXxXny.

(c) If a topological space X is Noetherian, then any subset equipped with the subset
topology is Noetherian.

(d) The image of an affine variety under a morphism of varieties is not necessarily an
affine variety. For example, consider

fiVie(ay—1) = K, (p,q) = p
for K a field. Then im(f) = K'\ {0}, which is not an affine variety if K is infinite.

Lemma 8. Let K be a field and X C K™ a set of points. For
M ={Y C K" :Y is an affine variety, X C Y'}

it holds V(I(X)) = ycy Y and the right side is by definition the closure X of X with
respect to the Zariski topology.

Proof. Since V(I(X)) is an affine variety containing X, it is clear that V(I(X)) D
MNyen Y- For the other inclusion, let Y = V(S) € M. Since X C Y, it follows S C I(X)
and thus V(I(X)) Cc V(S) =Y. O

Lemma 9. Let X C K™ be a set and K" equipped with the Zariski topology. Then

I(X) = I(X).

Proof. Tt is clear that I(X) D I(X). On the other hand, I(X) = I[(V(I(X))) D I(X).
Alternatively, let f € I(X) and notice that the set V(f) is closed and contains X, so
X C V(f), implying I(X) D I(V(f)) and thus f € I(X). O

3.1 Some properties of affine varieties

Let K be an algebraically closed field and X, Y C K™.
(a) Prove that V(I(X)+1(Y)) = XNY, where [ +J = {i+jli € [,j € J} and
X is the closure of X in K.

(b) Give an example where V(I(X)+I(Y)) #XNY.

(c) Prove that X NY = (), if and only if there is an f € K|[x1,...,x,], such that
f(z)y=0forall z € X and f(y) =1forally €Y.




(a) Recall that for any ring R and ideals I, J C R it holds that I +.J = (I U J)g. Since
a vanishing set is determined by its generators , we get:

VIX)+IY)=VI(X)UIY)=VI(X)NVI(Y)=XNY.

(b) We give two examples:
e Choose K = C,n =1 and consider X =N, Y =7 \N. Then X =Y = C, so
VIX)+I(Y)=XNY =C,but XNY = 0.

e Choose K = C, n =2 and consider

X ={(z,y) e Clz =0,y #0} =X ={(z,y) € C*lz =0}
V={(z,y) e C°lz #0,y =0} =Y ={(x,y) € C*|y = 0}.

Thus V(I(X) +1(Y))=XNY = {(0,0)}, but X NY = 0.
(c) “=": By Hilbert’s Nullstellensatz (Corollary 1.8)
D=VIX)+IY)=XNY <= [(X)+I(Y)=(1).

Thus there is f € I(X), g € [(Y) with f+ g =1, so f(x) =0 for all z € X and
flyy=1forally €Y.

“<": Since X C V(f) and V(f) is closed by definition, it follows X C V(f).
Similarly, Y C V(f — 1) implies Y C V(f — 1). Therefore, the claim follows from
V() AV(f~1) =0, o

An alternative proof goes as follows: Assume there exists t € X NY. Since f €
I(X), f(x) =0 and because f —1 € I(Y), f(z) — 1 = 0. Contradiction.

3.2 Dominant morphisms of affine varieties

Let X be an affine variety. An automorphism of X is an isomorphism X — X of
affine varieties.
(a) Prove that automorphisms of C (with the Zariski topology) are precisely the
maps = — ax + b with a # 0, b € C.

(b) Give an example of an automorphism of C? (with the Zariski topology), which
is not of the form (x,y) — (ax+by+c,dx+ey+ f) for some a,b,c,d, e, f, € C.

(a) x — ax + b with a # 0 is an automorphism with inverse z — éx — g Now let
f € C[z] be an automorphism, so there is g € C[z] with g o f = id. Clearly,
f,g € C|x] are not constant. Thus it holds that deg(g o f) = deg(g) - deg(f).

1 = deg(go f) = deg(g) - deg(f) = deg(f) = 1.

(b) For instance
¢ (2,y) = (v,y —2°), ¢~ (2,y) = (2,9 +2°).



3.3 Graphs as Affine Varieties

Let K be a field, X € K™, Y C K™ affine varieties and f : X — Y a morphism of
varieties. The graph of f is defined as

Iy ={(z,y) e X xY: f(z) =y} C K",
(a) Prove that I'y € K™*™ is an affine variety.

b) Prove that oo : X — I'y, x — (x, f(2)) is an isomorphism of varieties.
( s

(a) Denote the components of f by f;. It holds
=V (fi(z1,...,20) —y1, . f (@1, T0) — Um)-

(b) The inverse is given by I'y — X, (z,y) — =.

3.4 Dominant and injective morphisms

For K a field and X, Y affine varieties over K, let f : X — Y be a morphism and
¢ : K[Y] — K[X] the homomorphism induced by f. L
The map f is called dominant if f(X) is dense in Y, i.e. f(X) =Y.

(a) Prove that f is dominant if and only if ¢ is injective.

)
(b) Prove that f is injective if ¢ is surjective.
(c¢) Give an example in which f is dominant but not surjective.
)

(d) Give an example in which f is injective but ¢ is not surjective.

Recall that ¢ is defined by ¢(g) = go f, i.e. it simply describes function concatenation.

(a) “=7: Let p € ker(¢). Then po f =0, thus p|sx) =0, i.e. p € I(f(X)). By[gand
the assumption, this implies p € I(Y).

“<": We need to prove that V(I(f(X))) =Y =V (I(Y)). It suffices to show that

I(f(X)) = I(Y). Since f(X) C Y, we get I(Y) C I(f(X)).

On the other hand, let p € I(f(X)) with equivalence class p == p + I(Y'). Then

Plrx) =0, 50 ¢(p) =po f =0 so by injectivity p =0, so p € I(Y).

Alternative proof: By contraposition, suppose f is not dominant and let y € Y\

f(X). Since f(X) is an affine variety, there is g € I(f(X)), such that g(y) # 0.
Then ¢(g) = go f =0, despite g # 0 in K[Y], so ¢ is not injective.

(b) Let K[X]| = K|[x1,...,x,]/I(X). By surjectivity, there exist g; € K[Y] with ¢(g;)
B+ I(X). Let €= (6o &0)y = (1) € X with £(€) = f(n). Then

&= 0(9:)(&) = a:i(f(&)) = gi(f(n) = &(g:)(n) = mi

for all i € {1,...,n}. Thus f is injective.

Alternative proof: By contraposition, suppose f is not injective, so there are a,b €



X, a # bwith f(a) = f(b). Choose i € IN, such that a; # b;. Then any g € ¢(K[Y])
satisfies g(a) = g(b), so z; + I(X) & ¢(K[Y]) and ¢ is not surjective.

(c) We give two examples:

e Let X = R C R!, Y = R. Then a morphism X — Y is just a polynomial in

R[z]. f = 2? satisfies f(X) = Rso and f(X) = R.
e Take X = V(zy—1) Cc C?and Y = C and f : X — Y,(z,y) — z. Then

F(X) = €\ {0} and F(X) = C.
(d) Again, we give two examples:

e Let X =R CR'" Y =R and consider f = 3. Clearly, z € ¢(K[Y]).

e Choose the same XY, f as in the second example of (c¢). By (a) and (c), ¢ is
injective. If it were surjective, then it would be an isomorphism of rings, but

K[X] = Klz,y)/(vy — 1) = K[z,2™"] % K[2] = K[Y],
where we applied the homomorphism theorem to the K-algebra isomorphism
1

X : K[z, y] —>K[x,x’1],xr—>x,y»—>x’ )

Therefore, f can not be surjective.

3.5 A Basis of the Zariski Topology
Let K be an algebraically closed field. For f € Klxy,...,z,| we define
D(f) = {z € K" f(x) £0}.
The set D(f) is called the distinguished (or basic) open set of K™ associated with
f.

(a) Prove that {D(f) : f € K[z1,...,2,]} is a basis of the Zariski topology on
K™, i.e. every open set can be written as a union of some of the D(f).

(b) For f € K[z1,...,x,] we define the affine variety
Xy = {(a:l,...,a:n) e K"t flzy, ..o xn) Ty = 1}.
Prove that the map
7: Xy = D(f), (z1,...,Tps1) = (T1,...,Ty)

is well-defined and bijective.

(c¢) Prove that 7 is a homeomorphism with respect to the Zariski topology.

(a) Follows from the definition.



(b) The inverse is given by
7t D(f) = Xp, (21,...,20) — (q:l,...,xn,f(xl,...,xn)_l).

(c) 7 is a morphism of varieties, so it is continuous with respect to the Zariski topology:
For U C K™, it holds

' UNDf) =7 U)Nn7(D(f)) =7 (U)N Xy,

which is closed in Xj.
It is left to show that 7~ is continuous. Since the D(g) form a basis of the topology,
it is enough to check that their preimages are open. This holds:

T(D(g)NXy) ={z € K": f(z) # O,g(ml,...,xn,f(x)_l) #0}

= {z € K" : f(2) # 0, f(2)*5Dg (21, zn, f(2) 1) # 0}
= D(f)n D(h),

where h = f(x1,... ,xn)deg(g)g(ml,...,xn,f(xl, o ,xn)_l) € Klxy,...,z,)

3.6 Some morphisms of Varieties
Let X = V(xy — 1) C C2. Consider the mappings

fi: X = X, (z,y) = (2%, y°)
fo: X = X, (z,y) = (71 y™h)
f3: X =X, (z,y) — (z,9)

Are the f; morphisms or even isomorphisms of varieties?

(a) By definition f; is a morphism. But it cannot be an isomorphism, since it is not
injective:
f1(1,1) =1= fi(—1,-1).
b) Any element (x,y) € X satisfies xty — 1 =0, so 1 = zy. Therefore
Yy Y Y Y
for X =X, (v,y) = (y,2)

and f5 is a morphism and even an isomorphism, because fs o fo =idy.

(c) We claim that f3 is not a morphism. Suppose the opposite, so there exists g € C|x, y]
with g(z,y) = z V(z,y) € X. As already noted any element (z,y) € X satisfies
y=1z"' s0 g(z,z7') =2z Vr e C\ {0}. This leads to

glz,z7) —2z=0Vx c R\ {0}.
Let n := deg,(g) be the degree of g with respect to its y-component. It follows
glx) — 2" =0Vr e R\ {0},

where g € K|[z] is a polynomial in one variable. This implies § = 2", so g = z.
Contradiction.



3.7 A non-morphism on C

Let X = Cand Y = V(2? —y?) C C?. Prove that X 2 Y (i.e. that there does not
exist an isomorphism of varieties between them).

Suppose the opposite, let f = (f1, f2) be a surjective morphism from X to Y, fi, fo €
Clz]. Then f(x) — f2(x) = 0 for all z € C. Thus fi(z) = fo(x) or fi(z) = —fo(x)
for infinitely many x € C. This implies that f; = f; or fi = —fs. In the first case,
(1,—1) ¢ im(f), in the second one (1,1) & im(f). Contradiction.

Alternatively, one can show that the coordinate rings K[X]|, K[Y] are not isomorphic:
K[X] = K[z], but K[Y]is not an integral domain, since ((z—y)+1(Y))-((z+y)+1(Y)) =
0+ I(Y).

3.8 The Zariski topology on Spec(Z)

Determine the following sets:

() Vspee(z)({9}),

(b) VSpec(Z)({67 10})7

(c) Iz({(7), (11)}),
)

(d) {(0)} (the closure of the zero ideal in Spec(Z))
(a) {(3)}
(b) {(2)}
(c) (77)
) . Since X is closed, we can write X = Vgpee(z)(S) for S C Z. Since

0) = {0}. This implies that X = Spec(Z).

3.9 Spec(R) Noetherian implies R Noetherian?

Prove or disprove: If for a ring R, Spec(R) is Noetherian, then R is a Noetherian

ring.
The statement is false. Consider the ring R = Klx1,2s,...]/(2},23,...). Since the
ideal I = (Z1,Z3,...) is not finitely generated, R is not Noetherian. However, [ is

the unique maximal ideal in R, because every prime ideal has to contain the nilradical
elements 7; € I and R/l = K is a field. Thus Spec(R) = {[} is a singleton, so in
particular Noetherian.



3.10 Jacobson property and the Zariski topology

Prove that a ring R is Jacobson, if and only if for all Y C Spec(R) Zariski-closed,
Spec,,..(R) NY is dense in Y.

A ring R is Jacobson if and only if any radical ideal I can be written as
Zr(SPeCuax () N Vspee(r) (1)) = 1.
By proposition 3.6, this is equivalent to
SPeCiax (R) N Vspeo(r) (1) = Vapec(r) (Zr (SPCmax (R) N Vapeo(r) (1)) = Vspec(r) (1)

By the same proposition, Vsyeo(r) defines a bijection between the radical ideals of R and
the Zariski-closed subsets of Spec(R), which proves the claim.

3.11 Irreducible components of an affine variety

Determine the decomposition into irreducible components of the affine variety

Vz? -3 22 -1 UV(z—vy%2) C C°.

The affine variety can be rewritten as
Viz—y,z—1DUV(E@—y,z2+ 1) UV(@+y,z—-1)UV(r+y,z+ 1)UV (e —19° 2)

and we claim that this the desired decomposition into irreducible components. By theo-
rem 3.11, such a decomposition into closed, irreducible subsets with Z; ¢ Z; for i # j is
unique, so by theorem 3.10, we have to show that the corresponding ideals are prime.
The ideal (z —y,z — 1) C Clz, y, 2] is prime, because the C-algebra homomorphism

Clz,y,2] = Clz], x = x,y — z,2— 1

is surjective with kernel (z — y,z — 1) and thus induces an isomorphism C[z,y, z]/(x —
y,z — 1) = Clz].

Alternatively, since any morphism of varieties is continuous with respect to the Zariski
topology, every isomorphism of varieties is a homeomorphism. Thus we can conclude
that V(x — y, 2z — 1) is irreducible, because an isomorphism of varieties is given by

C'—=V(w—y,z-1), 2+ (v,2,1)

and C! is irreducible. The irreducibility of the other affine varieties follows analogously.

3.12 A homeomorphism

Let K be an algebraically closed field and X C K™ an affine variety. Theorem
1.23 establishes a bijection ¢ : X — Spec,..(K[X]). Equip X with the Zariski
topology and Spec, .. (K[X]) with the subspace topology of the Zariski topology
on Spec(K[X]). Prove that ¢ is a homeomorphism.




Proof. Recall that
fel({x})/I(X) < flz) =0
and thus

S c I{a)/I(X) <= 1z € Via(S). (+)

It is to show that ¢ and ¢! are continuous.
To show that ¢ is continuous, we take U = Vspec(x[x])(S) N Spec
that its preimage

max (K [X]) closed and see
67 (U) = {z € X : I({z})/1(X) € Vepee(xx)(5)}
={reX:Sci({z})/I(X)}

is closed as well.
To show that ¢! is continuous, let Y = Vi« (S) and note that

(V) = {I({x})/1(X) : v € Vgn(5)}
= Vspee([x])(S) N Spec,. (K[X]),

where the second equation holds due to (x) and because by surjectivity of ¢ every maximal
ideal J € Spec,,.(K[X]) is of the form J = I({z})/I(X). O

max(

3.13 Another homeomorphism and irreducible
components

(a) Let R be a ring and I C R an ideal. Prove that the bijection between
Spec(R/I) and Vspee(r)(I) given in lemma 1.22 is a homeomorphism.

(b) Determine the decomposition of Spec(Z[x]/(2z)) into irreducible components.

(c) Let R be a ring and I C R an ideal with I C /(0). Prove that Spec(R/I)
and Spec(R) are homeomorphic.

(a) Since 1) is an inclusion-preserving bijection, it holds for ideals S, J C R:
ScJ = S/I=y1S)cy*(J)=J/I. (%)
The closed sets in Spec(R/I) are by bijectivity of 1 of the form Vsyec(r/n(S/1)
with S C R ideal and the closed sets of Vspeo(r)() are of the form Vspee(r)(S) with
S C Rideal and I C S. Now
¢_1(V8pec(R)(S)) = {J/I € SpeC(R/I) J e VSpec(R)<S)}

={J/I € Spec(R/I):S C J}

W (/1 € Spec(R/T) : S/I C J/T}

= Vspee(r/1) (5/1)

shows that 1 is continuous and applying v to both sides shows that 1~ is contin-
uous.



(b)

(c)

For R a ring, the irreducible components of Spec(R) correspond to the minimal
prime ideals of R.

In this case, R = Z[z]/(2x) and a prime ideal in R has to contain 2 or z, since
22 = 0 in R. Thus (2) and (z) are the minimal prime ideals of R and therefore
Vapeo(r)((2)/(22)) and Vspee(r) ((2)/(22)) are the irreducible components of Spec(R).

Since every prime ideal contains 1/ (0), Vspee(r)(I) = Spec(R), so the claim follows
from (a).

3.14 Properties of Noetherian and irreducible

topological spaces

(a) Give an example of a topological space that is Noetherian but not irreducible
and one that is irreducible but not Noetherian.

(b) A topological space X is irreducible if and only if every nonempty open set
is dense and X # ().

(c) Let X be a topological space and Y C X an irreducible subspace (with the
subspace topology). Y is irreducible if and only if its closure Y is irreducible.
In particular, any maximal irreducible subset is closed.
This gives some intuition about theorem 3.11(c).

(a)

The topological space of two elements with the discrete topology is Noetherian but
not irreducible. On the other hand, an irreducible space, which is not Noetherian,
is given as follows: Take an infinite set X and choose some element x € X, the
closed sets of the corresponding topological space shall be P(X \ {z}) U {X}.

Suppose X # () is not irreducible, i.e. there are two proper closed sets A, B C X
with X = AU B. Then —A is open and since =A C B, —A is not dense in X.

If on the other hand there is a nonempty open set U, which is not dense, then
X = =U UU shows that X is not irreducible.

Suppose Y is irreducible. Since Y is closed, the closed (with respect to the subspace
topology) sets are precisely the closed subsets of Y. Suppose Y = AU B with
A,B CY closed. Then Y = (ANY)U(BNY),s0Y =ANY orY = BNY,
implying Y € A or Y C B. Since A and B are closed and Y is the smallest closed
set containing Y, we conclude Y = A or Y = B, so Y is irreducible.

Now suppose that Y is irreducible and write Y = (ANY)U(BNY) with A, BCY
closed. Then Y C AU B and AU B is closed, so Y C AUB. Thus Y = (4N
Y)U (BNY) and since Y is irreducible, it follows Y = ANY or Y = BNY. In
particular, Y C A or Y C B, which shows Y = ANY or Y = BNY and thus Y is

irreducible.



3.15 Morphisms in the spectrum

(a) For the inclusion ¢ : Z < Z[z], let ¢* denote the corresponding map
Spec(Z[z]) — Z. Determine ¢*((2, z)z())-

(b) For the projection ¢ : Z — 7Z./3Z, let ¢* denote the corresponding map
Spec(Z/3Z) — Spec(Z). Determine ¢*((0)z/3z)-

(a) ¢*((2,2)z)) = ¢ (2, 2)z1) = (2,2)zm NZ = (2).
(b) ¢*((0)zs3z) = ¢~ ((0)z/32) = (3).




Krull Dimension

Remark 10. (a) Gauss’s lemma is useful for showing that some polynomials are irre-
ducible over a field.
For example, z — y? € C[z,y] is primitive and can be viewed as a polynomial in
Cly][z]. As a polynomial of degree one over a field it is irreducible in C(y)[x], so
Gauss’s lemma shows that = — y? is irreducible in C[z, y].

(b) An ideal, which is generated by irreducible polynomials, in a multivariable poly-
nomial ring over a field K is not necessarily prime. For example, consider [ =
(x_y27x _’22> - K[Q?,y,Z}.

(c) For a ring R, it holds (with the usual convention supy = —1):

dim(R) = sup dim(R/P).
PeSpec(R)

This is used in the proof of lemma 5.6, because it allows restricting to the case of
integral domains.

(d) Let K be a field and A be a K-algebra, which is generated by the set S as a K-
algebra. If A is an integral domain, then Quot(A) = K(S) by definition of K(5).
This is used in the proof of lemma 5.6.

(e) Let R be a ring and A an R-algebra. Then every ideal in A is in particular an
R-submodule. This is used in the proof of theorem 5.11.

(f) Let P C R be a prime ideal, which is an intersection of finitely many maximal
ideals P = (1, m;. Then P is equal to one of those maximal ideals m;, because

n n
P = ﬂmi D Hmi
i=1 i=1

implies m; C P for some i € {1,... n}.
This is used in the proof of theorem 5.11.

Lemma 11. Let R be a finite-dimensional ring and I C R an ideal.
Then dim(R/I) = dim(R) if and only if ht(/) = 0 (I contains no prime ideals).
In particular, dim(K[xq,...,z,|/I) = n if and only if I = (0).

Proof. 1f ht(I) > 0, then there is a prime ideal J € Spec(R) with J C I and thus a chain
of prime ideals of length m in R/I gives rise to a chain of prime ideals in R of length
m + 1. Since dim(R/I) < dim(R) < oo, this implies dim(R/I) < dim(R).

On the other hand, if ht(I) = 0, then there is a order-preserving bijection between
Spec(R/I) and Spec(R) (in other words, Spec(R/I) = Spec(R) as partially ordered sets
with inclusion C), so dim(R/I) = dim(R). O



4.1 True or False: Krull Dimension

Decide for the following statements whether they are true or false. Give a proof or
a counterexample.

(a) If R C S is a subring, then dim(R) < dim(.5).

(b) If K is a field, A an affine K-algebra and B C A is a subalgebra, then
dim(B) < dim(A).

(c) If I is an ideal in a ring R, then dim(R/I) < dim(R).

(d) If R is an algebra over a field K with dim(R) = 0, then R is finite dimensional
as a K-vector space.

(a) False, since Z C @, but dim(Z) =1 > 0 = dim(Q).
(b) True, since by theorem 5.5 and theorem 5.9, it holds

dim(B) < trdeg(B) < trdeg(A) = dim(A).

(c) True, since a chain of prime ideals of length n in R/I gives rise to a chain of prime
ideals of the same length in R.

(d) False. Consider R as a Q-algebra. Because R is a field, dim(R) = 0. But R is not
finite dimensional as a Q-vector space, because a finite dimensional vector space
over a countable field is countable; but R is not countable.

Alternatively, consider R = K[z, xa,...]/(23,23,...), which has the unique prime
ideal (Z71,73,...) and thus has dimension 0. However, R is not finitely generated
as a I{-vector space.

Another example is K (x), the field of rational functions.

4.2 Noetherian factorial rings of dimension one

Let R be a Noetherian, factorial ring with dim(R) = 1. The goal of this exercise is
to prove that R is a principal ideal domain.
(a) First prove that every prime ideal in R is principal.

(b) Now let a,b € R\ {0} and d = ged(a,b). Prove (a,b) = (d).
Hint: Show that (%, %) is not contained in any maximal ideal.

(c) Now prove that every ideal in R is principal.

(a) For the zero ideal this holds by definition and because dim(R) = 1, every nonzero
prime ideal P satisfies ht(P) = 1, so lemma 5.14 yields the claim.

(b) Since d|a, d|b, it holds (a,b) C (d).
Claim: There is no maximal ideal m € Spec

If % is a unit, then this is clear, so suppose §

R) with (%,%) c m.
is not a unit. Aiming for contradiction,

max(



suppose such a m € Spec,,, (R) exists. % can be decomposed into irreducible
elements § = pi...p,. Since m is a prime ideal, p; € m for some i € {1,...,n}
and thus (0) € (p;) C m implies (p;) = m, because dim(R) = 1. In particular, p;
divides both § and g, which is a contradiction.

Using the claim (and the axiom of choice), we conclude that there exist 7" € R

with r¢ + 1'% =1, s0o ra+ r'b = d and (d) C (a,b).

(c¢) Let I be an ideal in R. Since R is Noetherian, I = (a4, ..., a,) is finitely generated.
[terating (b), we get

I=(ay,...,a,) = (ged(ay,a0),as,...,a,) = ... = (ged(aq, ..., a,)).

4.3 Dimension of a polynomial ring over a PID

Let R be a principal ideal domain, which is not a field. The following steps will
show dim(R|x]) = 2.
(a) Prove that dim(R[x]) > 2.

(b) Let P C R[x] be a prime ideal with P N R = {0} and K = Quot(R). Prove
that
Q={feKz]:Jac R\ {0}:af € P}

is a prime ideal in K[z] and that @ N R[z] = P.

(c) Let Py € P, € P, be prime ideals in R[z]. Prove P, N R # {0} and deduce
P, N R = (p) for some prime element p € R.

(d) With the same notation as in the last step, prove that P»/(p) is a maximal
ideal in R[z]/(p).

(e) Conclude that dim(R[z]) < 2, proving the claim.

(a) Since R is a principal ideal domain, there is a € R, which is not a unit. Therefore,
there is an irreducible element p|a. (p) is prime in R and in R[z]. Since R[x]/(p, x) =
R/p and R/p is a field, (p, z) is a maximal ideal in R[z].

We get a chain of prime ideals of length 2:

0) < (p) € (p,2).
Alternatively, one can argue that R[x]/(x) = R shows that (x) is not maximal.
(b) @ is a prime ideal in K|x]:

e 0€Q.
o Let a,b € Q, i.e. there are a,b € R\ {0} with af € P, bg € P. Then ab # 0
and ab(f + g) = abf + abg € P shows f + g € Q.

o Let feQwithaf € P,ae R\{0} and g € K[z]. Let d denote the product of
the denominators of the coefficients of g. Then ad € R\ {0} and (ad)gf € P,
because dg € R[z], so gf € Q.



(e)

e Let f,g € Klx] with fg € @, i.e. thereis a € R\ {0} with afg € P. Let
b,c € R\ {0} such that bf € R[z], cg € R[z]. Then a(bf)(cg) € P implies
bf e Porcge P,so feQorgeQQ.

It is left to show @ N R[z] = P. Let f € @Q N R[z], i.e. thereis a € R\ {0}
with af € P. Since P is prime in R[z] and P N R = {0}, it follows f € P, so
QN R[z] C P.

On the other hand, 1-p € P for any p € P, so P C Q N R[z].

By (b), the map
{P € Spec(R[z]) : PN R ={0}} — Spec(K|[z]), P— Qp
is inclusion-preserving and injective, because if Qp = Qp/, then
P = Qp N Rlx] = Qp 1\ Rls] = P'.

If it was P, R = {0}, then also PhN R = PN R = {0} and thus Qp, C Qp, < Qp,
is a chain of prime ideals of length 2 in K[z|, which contradicts dim(K[z]) = 1.
Clearly P, N R is a prime ideal in R and nonzero by the above. Because R is a
principal ideal domain, the second claim follows.

Since R[z]/(p)ri) = (R/(p))[x] and R/(p) is a field, it suffices to show that P/ (p)
is nonzero, because any nonzero prime ideal in a principal ideal domain is maximal.
Suppose for contradiction that P»/(p) = (0), i.e. P, = (p). In particular, p & P;.
Let f € P\{0} and decompose it into irreducible elements f = p; ... p,. Since P, is
prime, p; € P, for some i € {1,...,n}. But P, C P, shows p|p;, so by irreducibility
p-a = p; with a € R[z] a unit, implying p € P;. Contradiction.

By (d), P»/(p) is maximal in R[z]/(p), so P, is maximal in R[z] and dim(R[z]) < 2.

4.4 Krull dimensions of rings

Determine the Krull dimension of each of the following rings:

(b) R=Klz, x| = {3 ,__, axa”: ax € K,n € N} C K(z), the ring of Laurent

(a) R = K[x], the formal power series ring over a field K,

polynomials over a field K,

(¢) R=7Z/nZ, where n € N\ {0,1}.

(a)

By a previous exercise, (x) is the only maximal ideal in R.
Now let I C R be a nonempty prime ideal and f = > ° a,2" € I an element of
I. Tf ay # 0, then f is invertible, so ag = 0 and thus there is & € Ny, such that

ar = 0 and thus

f=a". Zanx”.
n=~k

—_——
eK|[z]*



It follows x € I and by maximality I = (x). Therefore, (0) and (z) are the only
prime ideals in K[z], implying dim(K[z]) = 1.

Alternatively, one can show that K[z] is a principal ideal domain, which directly
yields the result.

(b) R is an affine K-algebra and is generated by the set {z,z7'}. Clearly {z} is
algebraically independent over K, but {x,z~'} is not, (consider yz — 1 € K[y, 2]).
By theorem 5.9 and proposition 5.10, we conclude dim(R) = 1.

(c) Because (0) C (n), [L1] implies dim(Z/nZ) < dim(Z) = 1, so dim(Z/nZ) = 0.
In particular, we see that Z/nZ is an Artinian ring for n € IN \ {0} (theorem 2.8).

4.5 Krull dimensions of rings 11

Calculate the Krull dimension of the following rings, where K is a field:
(a) R=Klz,y/(z* +y*+1),

(b) R = K[m,y,z](y - 12722 - mg)a

(a) R is generated as a K-algebra by the set {Z,7}. Since that set is algebraically
dependent and {Z} is algebraically independent, it follows dim(R) = 1 by theorem
5.9 and proposition 5.10.

(b) With the same argument as the previous example, we see that dim(R) = 1.

For example,
0:x6_x6:y3_(22)2:y3_24

shows that the set {y, z} is algebraically dependent over K.

4.6 Von Neumann regular rings

A not necessarily commutative ring R is called von Neumann regqular, if
Vxe€ R:da€ R:x = zax.

So a can be thought of as something like an inverse of x.
For a commutative ring R prove that:
(a) If R is von Neumann regular, then R is reduced and dim(R) = 0.
The converse is also true, but hard.

(b) If R has dim(R) = 0 and is an integral domain, then R is von Neumann
regular.

(a) Let r € R with 7" = 0 and n minimal with that property. We show that n = 1.
If n > 1, then m = [§] < n, so 7™ = r"ar™ = 0 yields a contradiction to the
minimality of n. Thus r = 0 and R is reduced.



Now let P C R be a prime ideal. Then R/P is von Neumann regular and an integral
domain. For x € P, we get

r+P=a’+P=z(l+ar)eP= (1+ar)eP= (a+P)(z+P)=1+P,

so R/P is a field. This means that any prime ideal of R is in fact maximal, so
dim(R) = 0.

(b) R= R/(0) is a field and thus von Neumann regular.



Localization

Lemma 12. Let M be a module over a ring R and U C R a multiplicative submonoid.
(a) If Ann(M)NU # 0, then UM = 0.
(b) If M is finitely generated, then U~'M = 0 if and only if Ann(M)NU # (.

Proof. (a) If x € Ann(M) N U, then xm = 0 for any m € M and thus 2 = 0 for any
mneU M.

(b) Choose generators my,...,m, € M of M as an R-module. Suppose UM = 0.
Then for each m;, i € {1,...,n} it is %= = 0, so there is u; € U with w;m; = 0. It
follows []'—, w; € Aun(M) N U.

]

5.1 Example of a local ring

Let R :=Z[z] and I == (20 — 1) C R.
(a) Prove that Z) is a principal ideal domain. In particular, Z) is a unique
factorization domain.

(b) Show that [ is a maximal ideal.
(¢) Determine ht(I).
(d) Does dim(R) = dim(R/I) + ht([) hold in this case?

(a) Anideal I C Zy) is of the form I = J), where J C Z is an ideal in Z. Since Z is
a principal ideal domain, J = (p) for some p € Z and thus I = (%’)

(b) Intuitively, the element in T € R/I is precisely the inverse of 2. This motivates
the following argument. Viewing Q) as a Z)-algebra, we consider the surjective
Z.(3)-algebra homomorphism

1
R — Q, xr—>§.

The kernel is given by I, so R/I = @ and thus [ is maximal.

(c) Z) is Noetherian, because Z is Noetherian and thus Z)[z] is Noetherian as well.
It follows ht(I) < 1. The chain (0) C I shows that ht(I) = 1.

(d) No. Because Z) is Noetherian, it holds dim(R) = 2, but dim(R/I) = 0 by
maximality of I and ht(I) = 1 by (c).



5.2 Reduced rings and localization

Let R be a ring. Prove that the following statements are equivalent:
(a) R is reduced.

(b) Rp is reduced for every prime ideal P C R.

(¢) Ry, is reduced for every maximal ideal m C R.

“(a) = (b)”: Let P € Spec(R) and ¢ € Rp with (%)k = 0 for some k € IN.y. This
means that there is z € R\ P with xa® = 0. Thus (za)* = 2*a* = 0 and since R is
reduced, it follows za =0, i.e. & = 0.

“(b) = (c)”: Since every maximal ideal is prime, this is clear.

“(c) = (a)”: If R is the zero ring, then there is nothing to show, so suppose R # 0.
By contraposition, suppose R is not reduced, i.e. there is a € R\ {0} with a* = 0 for
some k € INoy. Since R # 0, Ann(a) # R and is thus contained in a maximal ideal
m € Spec,,(R). Consider r := ¢ € R,, and notice that  # 0, because Ann(a) C m.
Since r¥ = % = 0, we conclude that R, not reduced.

One can alternatively formulate the same idea using contradiction instead of contraposi-

tion.

5.3 Support of modules

Let R be a ring and M a finitely generated R-module. Prove that

supp(M) = Vspee(r) (Ann(M)).

By [12] it holds:

P esupp(M) < Mp #0 <= Ann(M)N-P =10
< Amn(M) C P <= P € Vgpec(r)(Ann(M)).



5.4 Associated primes

Let R be a Noetherian ring and M a nonzero R-module.

A prime ideal P € Spec(R) is called an associated prime of M if there exists m € M
such that P = Ann(m). Notice that not all annihilators of elements of M are prime
ideals. Denote with Ass(M) the set of all associated primes.

(a) Prove that there is m € M \ {0} such that Ann(m) is maximal among all
ideals of this form; i.e. there exists nom’ € M\ {0} with Ann(m) C Ann(m/).

(b) Let m be as in (a). Prove that Ann(m) is a prime ideal, so in particular
Ass(M) # 0.

(c) Let U C R be a multiplicative submonoid. Prove that

Ass(U'M) = {P € Ass(M): PNU = 0}.

(d) Let M = R/I for some ideal I C R and P a prime ideal which is minimal
among those prime ideals which contain I. Prove that P € Ass(M).

(e) Let M = R/I for some radical ideal I and P € Ass(M). Show that P is a
prime ideal which is minimal among those which contain [.
Hint: Use corollary 1.12.
Together with (d), this shows that for a radical ideal I, Ass(M) is precisely
the set of all ideals which are minimal over /.

(a)

(b)

(c)

The set of ideals X = {Ann(m) : m € M \ {0}} is nonempty, since M is nonzero.
Because R is Noetherian, X has to contain a maximal element.

Let ab € Ann(m), i.e. abm = 0. If bm = 0, then b € Ann(m), so suppose bm # 0.
Then Ann(m) C Ann(bm), so by maximality Ann(m) = Ann(bm) and a € Ann(m).

“C”: Let P € Ass(U'M), i.e. P is prime and
m
P:Ann<—> ={reR:3xz€U:rem=0}.
u

Suppose there was y € PN U. Then there is x € U with yzm = 0, so r(yz)m =0
for every r € R, implying P = R. Contradiction.

It is left to show that P = Ann(m') for some m’ € M. Since R is Noetherian,
P = (ay,...,a,) and because a; € P, we can choose x; € U, i € {1,...,n} with
a;zym = 0. Set m' = ([[_, #;) - m. Clearly, Ann(m') C Ann(™). On the other
hand, let 7 € Ann(%*). Then r = Yo ra; with r; € R, so by definition of m/,
rm’ =0 and r € Ann(m’). This shows P = Ann(m/).

“D": Let P = Ann(m) € Ass(M) with PNU = 0. If erm =0 for z € U, r € R,
then xr € P, so r € P. This means

P:Ann(m):{reRzrm:0}:{T€R:EI:EEU:xrsz}zAnn(?).

We need to find a prime ideal ideal J = Ann(m) with I € J C P. It holds
I € Ann(m) for any m € M, so by (¢), it is enough to show Ass(Mp) # (. Due to



(b), Ass(Mp) = 0 can only happen if M is the zero module. But since I # R, M
has more than one element, so M # 0.

(e) Let P = Ann(m). It is clear that I C P and m ¢ I. Corollary 1.12 gives the
existence of a prime ideal ) € Spec(R) with I C @ and m ¢ Q. By corollary
3.14(d), we can assume () to be minimal over I. Thus it is enough to show P C Q.
To do so, let r € P,ie. rm € I. Since I C @, m ¢ Q and () is prime, this implies
re@,so P CQ.

5.5 Examples of localization

Describe the localization UM in the following cases, where R is a ring, U C R a
multiplicative submonoid and M an R-module.
(a) M =R=Q[z],U = {z*: ke N}.

b) M=R=27,U={1}U{12z: 2 € Z\ {0}}.
() R=Z, M =Z[z], U = Z\ {0}.

(d) R=Qlz], M = Qz]/(2?), U = {z*: k € N}
(e) R=Qlz], M =Q[z]/(2?), U = Q[z] \ (z)

(a) Clearly Q[z] CU'R C Q(z). It holds U™'R = Q[x, 27 !].

(b) Tt holds U™'R = Q by the ring isomorphism U~'R — Q, g %

(c) Tt holds UM = Q[z] by the module isomorphism

anx" + -4+ a1 + ag a ay aop
- " e —x
u u u u

UM — Q]

(d) Since 22+ f =0 for any f € M and 2* € U, it follows U~'M = 0.

(e) It holds U™'R = Qlz]/(x?), since the elements in U already are “invertible” (mul-
tiplying with them is a R-module isomorphism). Equivalently, there is a module
isomorphism

ag + a1 x

UM = Qfe)/(%), T s 24 B

u u

5.6 Localization of a module as base change

Let R be a commutative ring, U C R a multiplicative submonoid, and M an
R-module. Show

U'M~2U'R®gr M.

We show that U~'M satisfies the universal property of U"'R ® M, i.e. there is a
bilinear map € : U"'Rx M — U~ M such that for any abelian group A and bilinear map



f:UTR x M — A, there is a unique group homomorphism ¢ : UM — A, such that
the diagram

U''Rx M —— UM

\f

e:U'Rx M — UM, (Qm) H@:f.ﬁ
U U u 1
which first applies the canonical R-module homomorphism M — U~'M to the second
component and then multiplies the results. Since multiplication in the U~!R-module
U~='M is in particular R-bilinear, € is R-bilinear.

Let now f : U"'R x M — A bilinear be given and we want to construct ¢. By the
commutative diagram, it must in particular hold

o) i(ke)

which uniquely defines ¢. This definition is well-defined: If 7% = T—,/, i.e. thereisz € U
with zu'm = zum’, so by bilinearity of f, it holds

o)~ (28 ) () =) o) - o2)

Moreover, ¢ is a group homomorphism: If 2, % U~'M, then the bilinearity of f yields

gb(ﬁ—kﬁ//):qb(M):f(—um—l—um) (— um>—|—f<— um)
u U uu
=(om) w1 () =) - (%)
u u
It is left to show that the diagram commutes, so let (£, m) € U7'R x M. Then
1
(o) (z.m) =o(=) =f<5,rm> = f(z.m).

so U™'M with e satisfies the universal property of U 'R ®@x M, and there is a unique
isomorphism U™'M = U 'R ®r M.

commutes.
Define



5.7 Characterization of local rings and the Jacob-
son radical

Let R be a ring. Prove the following:
(a) R is local if and only if the set of all non-units R\ R* is an ideal.
This means that a local ring is precisely a ring R with a maximal ideal m,
such that every r € R\ m is invertible.

(b) Let J be the Jacobson radical of R, i.e. the intersection of all maximal ideals
of R and let z € R. Then

re€J < l—xzye R*V yeR.

(a) Suppose R is local. For r € R\ R*, there is a maximal ideal m € Spec,,,.(R), such
that » € m. Since R is local, this means that R\ R* C m C \R*, so the maximal
ideal is m = R\ R*.

On the other hand, if R\ R* is an ideal, every proper ideal is contained in it, so it
is the unique maximal ideal of R and thus R is local.

(b) Let z € J and y € R. Then 1 — 2y is not contained in any maximal ideal, since
otherwise that ideal would contain 1. Thus 1 — zy is a unit.
On the other hand, let m € Spec,,.(R) be a maximal ideal and consider m C (z,m).
(x,m) is a proper ideal, since 1 = yz + z for y € R,z € m implies by assumption
that m contains a unit. By maximality, it follows m = (x,m), i.e. x € m.



Nakayama’s Lemma and the
Principal Ideal Theorem

6.1 Nakayama’s lemma and system of generators

Let R be a ring, M a finitely generated R-module and J C R the Jacobson radical.
The module M/JM is a R/J-module. Let 7w : M — M /JM be the canonical map.
(a) Let U C M be a submodule. Prove the following statement:

U=M < n(U)=n(M).

(b) Let x1,...,x, € M. Prove the following statement:

M= (z1,...,22)r < 7(M) = (7(z1),...,7(T0n)) g/ ;-

(c) Assume R is local with maximal ideal m = J and let K := R/m be the
residue field of R. Let x4, ..., x, be a minimal set of generators of M. Prove
that n = dimg(M/JM); in particular, all minimal sets of generators have
the same number of elements.

(d) Give an example of a ring R and a finitely generated R-module M such that
not all minimal sets of generators of M have the same number of elements.

(a) Suppose w(U) = w(M). It is to show that this implies U = M. Since

J - (M/U) = (JM + U) /U,

it is left to show JM + U = M, since then Nakayama’s lemma yields M/U = 0, i.e.

M=U.

So let m € M. By assumption, there isu € U with m —u € JM,som e JM +U

and M Cc JM + U.

(b) Since 7((x1,...,2,)) = (7(x1),...,7(x,)), the claim follows immediately from (a).

(c) Because the z; generate M as an R-module, they generate M/JM as a K-vector
space, so dimg(M/JM) < n. On the other hand, the dimension of M/JM as a
vector space can not be smaller than n, because this would imply that M/JM is
generated by a proper subset of {m(z1),...,7(z,)}, which by (b) contradicts the

minimality of the set {z1,...,z,}.

(d) Take R = Z as a module over itself and notice that R = (1) = (2,3) and both of

the generating sets are minimal, but have a different number of elements.



6.2 Assumptions of the prime avoidance lemma

Show that the assumptions of the prime avoidance lemma can not be weakened
by considering the ring R = Fy[z,y]/(z?, y?, vy) and finding ideals J, I1, [, I3 C R

with J C Iy U I, U I3 but J ¢ I; for each 1.

Note that R ={0,1,z,y,z +y,z+ 1,y + 1,z + y + 1} and consider the ideals

I = (x)R = {va}7 L = (y)R = {an}a I3 = (I + ZU)R = {O,I‘ + y}
J = (z,y)r =1{0,2,y,x + y}.

Clearly J C U,<jc3li; but J ¢ I; for i € {1,2,3}.

6.3 Assumptions of the principal ideal theorem

In this exercise, we want to show that the principal ideal theorem only works in
Noetherian rings. For this, let R = K|z, xy, 2y zy3,...] C Klx,y], which is a
ring that is not Noetherian.

(a) Prove that there is only one prime ideal P C R with (z)g C P.

(b) Prove that ht(P) = 2.

(a)

Let P be a prime ideal containing (z)z. For n € N, (zy")° = z - 2y®* € P, so
xy® € P for all n € IN. Since the ideal P’ := (x,zy,zy? ...) C R is maximal
(R/P’' = K), it follows that P = P’ and thus it is the only prime ideal with (z)z C
P. Alternatively, the maximality of P’ can also be derived from P’ = (2, y) ko) VR
by proposition 1.2.

Because R is a K-subalgebra of a finitely generated K-algebra,
dim(R) < dim(K[z,y]) =2

and thus ht(P) < 2. On the other hand, the ideal P’ := (zy, xy?, xy>, .. .)g is prime,
because R/P’' = K|[z] is an integral domain (alternatively, since P’ = (y) k(2 N R)-
Therefore, the chain of prime ideals

[} c P cP

has length 2 and we conclude ht(P) = 2.



6.4 Noetherian (local) rings
(a) Let R be a Noetherian local ring with maximal ideal m and
M = {P € Spec(R) : ht(P) < 1}.
Prove that |Jpep P = m.

(b) Let R be a Noetherian ring (not necessarily local) with dim(R) > 2. Prove
that Spec(R) is an infinite set.

(a) Since any prime ideal is contained in a maximal ideal and the only maximal ideal in
Ris m, Upepy P C mis clear. On the other hand, let € m. Then (z) is a proper
ideal and by corollary 3.14, there are minimal prime ideals over (z). Pick one of
them and call it (). By the principal ideal theorem, ht(Q) < 1,50z € Q C Upcp P
and m C Jpeuq P-

(b) Let @ be a prime ideal with ht(@)) > 2 and consider the localization R¢, which is
a Noetherian local ring with maximal ideal Qq. By (a), Upey P = Qq- If M was
finite, then the prime avoidance lemma would imply Qg C P for some P € M,
which contradicts ht(Q) = ht(Qg) > 2. Therefore, M and thus Spec(Rg) are
infinite sets, so in particular Spec(R) is an infinite set, as well.

6.5 Examples of systems of parameters

Let x = (0,...,0) € C". Find a system of parameters for the local ring C[X], in
each of the following cases:

(a) X = {(61752) € CQ : 5152 = O}a
(b) X = {(&1,&2,&) € C°: §§ + &5 — &5 =0},
() X ={(&,&) e C: & +&(E&+1) =0}

By corollary 7.9, the number of elements in a system of parameters is given by the
Krull dimension of C[X],. Also note that the maximal ideal m in C[X], is given by
m=(,...,m),

T7 ]
(a) It is C[X]|, = (Clz1,22)/(x1 - 22)),. Since prime ideals in C[X], correspond to
prime ideals P € C[xy,xs] with (21 - x2) C P C (x1,23), the chain of prime ideals
(x1) € (21, 22) shows that dim(C[X],) = 1. Guessing yields m = /(Z1 + T3), so a

system of parameters is given by 77 + T5.

(b) Note that
(2] + 5 — a3) C (w1, 29 — x3) S (1, T2, 3)

is a chain of prime ideals, so dim(C[X],) = 2. It holds m = +/ (771, T3).

(c) Since
(23 + 21 (2 + 1)) C (21, 22)



is a chain of prime ideals, it holds dim(C[X],) = 1. We guess m = /(77).

6.6 Chains in a Noetherian ring

Let R be a Noetherian ring and
PPOPLDPD. ..

a chain of prime ideals. Prove that the chain stabilizes; i.e. there exists n € IN,
such that P, = P, for all 1 > n.

(a) Because R is Noetherian, Py = (aq,...,a,) is finitely generated. By the principal
ideal theorem, ht(Fp) < n.



Integral Extensions

Remark 13. (a) Let K C S be a ring extension with K a field. An element o € S is
integral over K if and only if it is algebraic over K.

(b) If R C S is a ring extension and R is not a field, then the notion of a minimal
polynomial does not necessarily exist. This is because for a € S, the kernel of the
R-algebra homomorphism R[x] — S, x +— s is not necessarily a principal ideal. See
example 8.2(3).

(c) For an integral ring extension R C S and P € Spec(R), there is @ € Spec(S) with
@ N R = P. This is an often used consequence of theorem 8.12.

(d) Let R C S be a ring extension and @ € Spec(S), P € Spec(R). Does @ C (P)s
imply RN C P?
No, consider e.g. Z C Z) and Q = (2)(2), P = (3).

(e) It is obvious that e.g. K[z, zy,zvy? ...]/(zy, zy?, ...) = K|z], but sometimes one
has to be careful. For example, consider S = Klz,y| = K[z, — y,z*> — y] and
I=(x—y,2*—y). Then S/I % K|x], because 7? —x = (2? —y) — (v —y). Instead,
S/I = Klz]/(2* — z).

Lemma 14. Let G be a group and ¢ € . Then multiplication by ¢, i.e. the map
G — G, v~ g-x,is a bijection.

Proof. The inverse is given by G — G,z + g~ - x. O

Lemma 15. Let R C S be an integral ring extension and @, Q" € Spec(S) with @ C @’
and QN R=Q ' NR. Then Q = Q.

Proof. This follows directly from theorem 8.12(b) by taking P = QN R, I = (0). O
Lemma 16. Let A be an affine K-variety with A = Klzy,...,z,]/I, I # (0), where

I = (p) is a principal ideal. Then for the Hilbert function hy, it holds h;(d) (d:”) for
d < deg(p) and hr(d) = (d:") - (d_defp”) otherwise.
Proof. Consider the K-vector space I<q = I N K|xy,...,2,]<q4. By the second isomor-

phism theorem, there is an isomorphism of K-vector spaces
Agd = (K[l’l, e ,$n]gd + I)/I = K[:L’l, C.e 7$n]§d/]§da
SO
dlmK(ASd) = dlmK(K[[E17 ce ,In]gd) — dlmK(ISd)

It holds dimg (K[z1, ..., 2n]<q) = (dzn) and dimg (/<) = 0 for d < deg(p). Additionally,
for d > deg(p), the isomorphism of K-vector spaces

[gd — K[$1, o 7xn}§dfdeg(p)> f P f
shows that dimg(/<q) = dim(K[z1, ..., Tn]<d—degp)) = (d_deff””). It follows for d >
deg(p):
. d+n d—degp+n
dlIIlK(ASd) = ( ) — ( &p )
n n



7.1 Rings of invariants of finite groups

Let R C S be rings. Then S becomes an R-algebra via the inclusion R — S. Let
Autg(S) denote the group of R-algebra automorphisms of S. For a finite subgroup
G C Autg(S), the ring of invariants is

This is again an R-algebra. Prove the following:
(a) S is integral over S¢.

(b) If S is finitely generated as an R-algebra, then there is a finitely generated

S ={acS:VoeG:o(a)=al.

subalgebra A C S, such that S is integral over A.

(c) If S is finitely generated as an R-algebra and R is Noetherian, then S¢ is
finitely generated as an R-algebra.

(a)

For a € S, define
f= H(m —o(a)) € Sx].
oceG
This is a monic polynomial with f(a) = 0. For 7 € G, applying 7 to the coefficients
of f yields [],eq(x — (1 0 0)(a)), which equals f by [14} so the coefficients of f are
in 5.

Write S = Rlay,...,a,). By (a), each of the a; is integral over S¢. Let A be
the R-algebra generated by the coefficients of the integral equations of the a;. By
definition, A finitely generated and by theorem 8.4, S is integral over A, because
the generators are integral over A.

Let A C S% as in (b). Since S is finitely generated as an R-algebra, it is also
finitely generated as an A-algebra, so by theorem 8.4, S is finitely generated as an
A-module. A is Noetherian as a finitely generated R-algebra (corollary 2.12), so
theorem 2.10 implies that S¢ C S is a finitely generated A-submodule. Now the
claim follows from [

7.2 Rings of invariants are normal

Let R be a normal ring and G C Aut(R) a group automorphism of R. Show that
the ring of invariants R® is normal, too.

Let £ € Quot (R®) integral over RY, i.e. there exist a; € R such that

r\"n r\n—1 r
(—) +a1(—) +- -+ ap1—+a, =0.
S S S

Consider the inclusion ¢ : Quot(R“) — Quot(R), % — ¢, which is a ring homomorphism
with ¢(RY) C R. Applying ¢ to the integral equation of £, we receive an integral



equation for ¢(Z) € Quot(RR), so ¢(%) € R, since R is normal. Therefore, s is invertible in
R. Because o(s) = s Vo € G, it follows o(s7!) = s 1 Vo € G, so s71 € RY and therefore
L e RC.

7.3 A normality criterion

Let R be a ring and assume there exists an element 0 # a € R, such that
(i) a is not a zero divisor,

(ii) the ideal (a) is a radical ideal,
(ili) the localizaiton R, is a normal domain.

Prove that R is a normal integral domain.

We first show that R is an integral domain. Let x,y € R with x -y = 0. Thus
7% =2 =0 and because R, is an integral domain, this implies a* - x=0o0ra"-y=0
for some k € IN+o. We conclude that = 0 or y = 0, because a (and thus a* for any
k € N+) is not a zero divisor.

It is left to show that R is normal. First notice Quot(R,) = Quot(R), because a is not
a zero-divisor. Let r € Quot(R) be integral over R. In particular, r is integral over R,,
which is normal, so r = & with p € R,k € N. If £ = 0, then » = p € R, so suppose

k > 0. The integral equation yields the existence of b; € R, n € N5, such that

n n—1

P

p _
aﬂ +"‘+bn,15+bn—0

qk(n—1)
and multiplying with a*" yields

pn + blakpn—l 4ot bn_1ak(n_1)p + bnakn —0.

€(a)

Therefore, p" € (a) and (a) is radical, implying p € (a). This means that there exists
p' € R with p = p'a, so r = = . Applying the previous argument iteratively (first to

/ *
r = =) shows r = % =p* € R.

7.4 Normalization of polynomials rings

Let R be a Noetherian integral domain. The goal of this exercise is to prove that
R[z] = R[z]. Proceed in the following steps:
(a) Show R[z] C R[z].

(b) For f € R[z], show that there is u € R\ {0}, such that uf* € R[z] for all
ke IN.

(c) Using (b), prove R[x] C R|x].




(a) For a € R with integral equation f € R[z], f is also an integral equation in (R[y])[z]
(with y-degree 0), so R C Rl[z]. By definition, = € R[z] and because Rlz] is an

R-algebra generated by x, this implies R[z| C R[z].

(b) With K = Quot(R), it holds R[z| C K[z] = K|z]. Thus, for every k € IN, there
is ur, € R\ {0} with u,f* € R[z]. Consider the finitely generated R|[z]-algebra
(R[z])[f]. Because f is integral over R[z], (R[z])[f] is finitely generated as an
R[z]-module by lemma 8.3. These generators can be written as polynomials with
coefficients in R[x] and “variable” f. Let n denote the highest power of f occuring
in these polynomials. Then every element in (R[z])[f] is an R|x]-linear combination
of {1, f, f%, ..., f"}. Since f* € (R[z])[f] for every k € N, u := []}_, u; satsifies the
desired property.

(c) Let f € Rz] and u € R\ {0} as in (b). Write f = Yo gaxt with a; € K.

Because the coefficient of 2 in f* is a¥, it holds ua* € R for every k € N, so a,
is almost integral over R. Because R is Noetherian, lemma 8.11 implies that a,
is integral over R, i.e. a, € R. In particular, a,2” € R[z] C R|x], so considering

= Z?:_ol a;z' € R[x] and applying the argument iteratively yields the claim.

7.5 Integral extension of a Jacobson ring

Let R C S be an integral ring extension and R a Jacobson ring. Prove that this
implies that S is also Jacobson.

Hint: Use that a ring is Jacobson if and only if every prime ideal is an intersection
of maximal ideals.

Let I € Spec(S). Then J := RN I € Spec(R) and because R is a Jacobson ring, it

holds
J = ﬂ m.

meSpec,, .« (R),JCm

Applying theorem 8.12 with P = m, I = I, it follows the existence of @,, € Spec(S) with
RNQ,,=mand I C Q,,.

We claim that @), is maximal. Suppose @, C @ with ) € Spec(S). Then RN Q D
RN Q,, = m and because RN Q € Spec(R), it follows R N Q) = m by maximality of m.
Additionally, I C Q,, C @, so 8.12(b) implies @Q,,, = @, so @, is maximal.

It follows with @ := ﬂmespecmax( R).JCm Qm

RNQ = N (RNQy) = N m=J=RNI.

meSpec,, . (R),JCm meESpec,, .« (R),JCm

Clearly,
IC ﬂ n C @,

nESPec, .« (5),ICn

so it is left to show @ C I.
If @ was prime, then we could conclude by [I5] Therefore, we want to find a prime ideal
containing @), and then apply the claim. Theorem 8.12 yields for P = J, I = @ the



existence of @' € Spec(95), such that RN Q" = J and Q C @'. Now [ and @’ are prime
ideals in S with RNQ' =J=RNIand I C Q C Q' so[15 implies [ = Q" and we
conclude I = Q.

7.6 Examples of Noether normalization

For a given field K and K-algebra R, find algebraically independent elements
ai,...,a, € R, such that R is integral over K|ay,...,a,).
(a) K =R, R=TR[z,y]/(2* +y* - 1),

(b) K =Ty, R = TFfw,z,wy + y*, wz + zy, vz + 2%] C Falw, x, vy, z].

By theorem 8.19, n € N is the Krull dimension of R.

(a) Clearly dim(R) < 1. Since z*+%? — 1 is prime and 2% +y* —1 = 22+ (y — 1)(y + 1),
it follows (22 +4? — 1) C (x,y — 1) and (z,y — 1) is maximal, so dim(R) = 1.

Consider a; = z. It is algebraically independent and integral over K, since 2% +
2
y°—1=0.

(b) Since y?> + wy = 0 and 22 + zz = 0, Fy[w,z,v, 2| is integral over R, implying
dim(R) = dim(Fyw, x,y, 2]) = 4.
Let ay = w, ag = x, a3 = wy + y* and a4 = zz + 22, Let f € Fyla,b,c,d] be a
polynomial in four indeterminants, such that f(aq,as,as,as) = 0. Comparing y-
degrees, it follows that f € IFy[a, b, d], but a;, as, ay are algebraically independent,
so f is zero and all the a; are algebraically independent. They are also integral over
Fylay, as, as, as], because

(wz + 2y)* + araz(wz + vy) + (aay + asaz) = 0.



7.7 Where going down fails

Going down holds for a ring extension R C S if for every P € Spec(R) and every
Q' € Spec(S) with P C @', there exists ) € Spec(S) with Q@ C Q" and RNQ = P.
In this exercise, we find an example of an integral extension of rings in which going
down fails.

Let K be a field of characterstic # 2, S = K]|z,y] the polynomial ring in two

indeterminants, and

R=Kla,b,y) CS with a=2>—-1 and b= za.
(a) Prove that S is the normalization of R.

(b) Show that
P=(a—(y~1),b-y(y’~1))r CR

is a prime ideal and that P is contained in the prime ideal
Q' = (z—1,y+1)s € Spec(S).

(c) Show that the unique ideal @ € Spec(S) with RNQ = P is Q = (x — y)s
and conclude that going down fails for the inclusion R < S.

(a)

S is integral over R, because x is integral over R by
2?2 —1—a=0.

As a factorial ring, S is normal and Quot(R) C Quot(S), so R = S.

Alternatively, notice that R := K]a, b| is Noetherian and an integral domain. By
exercise [7], it is left to show that K'[z] is the normalization of R'. Since R' C K|z, it
is clear that R' C K[z] = K[z]. Also a # 0, so z = b-a~! and therefore K[z] C R'.

Consider the inclusion map ¢ : R — S and the K-algebra homomorphism
¢S — Klz], z—x, y— .

Then ¢ .= ¢'o¢ : R — K|[z] is a surjective homomorphism with kernel P. It follows
that R/P = Klx], so P is prime.
Clearly, 22 —1 € Q and > — 1€ Q',s0oa— (y* — 1) € Q'.
Moreover,
P er=@-1)(-1)+E*-1)ecq,
V-y=@-Dy+) - -1)eq,
sob—y(y* —1) € Q' and we conclude P C Q'.

We first prove uniqueness. Let @ € Spec(S) with RN Q = P. By theorem 8.12; it
is enough to show that every such Q has to contain (z — y)s. Since 2* —y* € Q, it
follows z —y € Q or x +y € ). Assume for contradiction that z 4+ y € ). Because
(23 —x) — (v —y) € Q, subtracting z*(z +y) € Q and adding y*(z +vy) € Q yields

—y+yir—r+y=—a(zy— 1) +ylyr+1)=—(ay+1)(z —y) € Q.



By assumption and because () is prime, it follows (xy + 1) € @. Because @ is
prime, K|z,y]/Q is an integral domain. Additionally, K[z,y]|/Q is algebraic over
K, because = —y mod @ and zy + 1 € Q. Lemma 1.1(a) implies that K|z, y]/Q
is a field, so () is maximal. But by proposition 1.2, this means that RN Q) = P is
also maximal, which it is not. Contradiction.

It is left to show that @ = (x — y)gs satisfies RN Q = P. With the same notation
as in (b), this follows from ker(¢’) = @ and

RNQ = ¢ (ker(¢))) = ker(y) = P.

This shows that going down fails for the inclusion R < S: For P and @’ as in (b),
there is no @) € Spec(S) with @ C ' and RN Q = P, because the only candidate
is Q = (z —y)s by (c), but clearly @ is not a subset of Q'

7.8 Examples of Hilbert functions

For a field K and each of the following ideals I in a polynomial ring over K,
determine the Hilbert function h;.
(a) I =(y*—=x(z*+1)) C K[z,y],

(b) I= (IQ —yz) - K[l’,y,Z],

(c) I =(a" 2% y") C Klz,yl.

One solution for (a) and (b) is to apply |16/ and calculate the result. The following
presents an alternative solution by explicitly determining the basis of A<y.

(a)

Clearly
d

B, = {1,y, .. .yd,w,xy, o2y *1,x2,$2y, o ,nyd*Q}
is a linearly independent subset of A<,.
Moreover, 3 = y? — z in K|[z,y|/I and iteratively z**
fact a basis of A<4. Therefore, h; is given by

3 +

= 2'y? — 2! so B, is in

hi:N—=N 0—1, 1—3, 2<dw~ |By| = 3d.

Similarly to (a), a basis of A<, is given by
By = {yizj:i—i—j Sd}U{xyizj ] Sd—l}.

The monomials without z account for w elements and the monomials with

a for “ element, so hy(d) = |By| = (d + 1),

Notice that dim(K|z,y]/I) = 0, because every prime ideal in K{[z,y|/I has to
contain (z,y), which is already maximal. This implies that the polynomial to be
determined has to be constant.

Moreover, A<; = Ay for d > 4, because a monomial of degree 5 or higher has



to be dividable by z*, y* or 2%y%. Using this, we derive the following bases and
corresponding values of the Hilbert function:

0:{1} hr(0) =1
1:{1,z,y} hr(l)=3
2:{1,z,2% y,y* xy} hi(2) =6
3:{1,z,2% 2%y, 9%, %, vy, 2%y, vy°} hr(3) =10
>4 {12, 2% 2%y, 03 0P, vy, 2Py, oy?, 2y, 2y} hi(d > 4) =12

7.9 Integral over 7.7

Decide for each of the following complex numbers whether it is integral over Z or

not:
1 1-+5 3+2v6
(a) 2++/3 (b) 4 (©) 1—-v6

(a) Since ﬁg = %g =23 and (2 - V3)? = 7— 4v/3, an integral equation for
1

is given by 22 —4x + 1 € Z[x].

2+V/3
(b) Suppose for contradiction that %5 was integral over Z, i.e. there are a; € Z, such
that . o
1—+5 1—+5 1—+/5
( 4\/_> +CL1( 4\/_> +"'+an_1 4\/_+(In—0,
SO

n n—1
<1 - \/5) v 4a1<1 - \/5) 44", (1= /5 + 4"a, = 0.

Notice that the terms of (1 — \/g)n lying in Z are even in 1 + 5Z. Because 1 and
V5 are Z-linearly independent, all the terms in the previous equation, which lie in
Z., are divisible by 2, except for 1. But 2 divides 0, so this is a contradiction.
Alternatively, recall that %‘?’ is integral over Z. If %5 was integral over Z, then
N L

5 5 = —3 was integral over Z as well. But Z is normal, so —% €qQ

can not be integral over Z.

(c) Because
3+2v6  3+2V6)(1+v6) o
- — = V6 -3,

it is integral over Z, because V6 and 3 are integral over Z.

7.10 Unit groups of integral ring extensions

Let R C S be an integral ring extension. Prove for the unit group R* that R* =
S*NR.




It is clear that R* C S* N R. On the other hand, let » € S N R, so there is s € S
with r - s = 1. Because S is integral over R, there are a; € R and n € IN.q, such that

" a4+ ap1S+a, =0
and multiplying by 77! yields
stai+---+a, 1" 2 +a,r" =0,

so s € R.

7.11 Example of an integral closure

Determine the integral closure of Z in Q(v/11).

We claim that the integral closure R is S := Z[v/11]. Because v/11 is integral over Z,
S is integral over Z, implying S C R. Since S is factorial, it is normal and Quot(S) =

Q(v11),s0 S = R.

7.12 Right or Wrong?

Decide whether each of the following statements is true or false.
(a) Let K be a finite field and let X be a set. Then the ring S = {f : X —
K : f is a function} with pointwise operations is an integral extension of K,
which is embedded into S as the ring of constant functions.

(b) If R C S is an integral ring extension, then for every P € Spec(R) the set
{Q € Spec(S) : RN Q = P} is finite.

(a) True. Denote K = {ki,...,k,}. For f € S, an integral equation is given by
[T, (x — k;) € S[z]. Alternatively, notice that fI&1 — f = 0.

(b) False. For a finite field K and an infinite set X, consider S = {f : X — K :
f is a function} as in (a). For z € X, the maximal ideal I, == {f € S: f(x) =0}
satisfies K N I, = (0), so P = (0) € Spec(K) provides a counterexample.



Dimension Theory

Remark 17. (a) Let I C K{zy,...,z,] be anideal and A = K{[z4,...,z,]/I. For each
f € I'\ {0}, the initial form f;, of f is defined to be the nonzero homogeneous
component of f of least degree. The initial form ideal is defined as

-[in = (fin : f € ]\{0}) C K[.Il,...,.fn]
and the affine variety V' (I;,) is called the tangent cone of V(I).

(b) The (+);, operator does not behave well with respect to addition. More precisely,
the function

(')in:I_>Ia f'_>fin

is generally not a group homomorphism (defining 0;, := 0). For example, consider
I = K[z] C K[z] and notice ((z + 2?) + (—x)),, = (2?),, = =%, but (x + 2%);, +
(—2)in =2 —2x =0.

Moreover, it also generally does not hold that Ly = ((f1)i,---, (fn)i) for I =
(fi,..., fn) finitely generated. An example is given by I := (z + y?,x) C K|z, y],
because y? € [y, but ((z + y*)in, (2)im) = (2).

in

(c) Let R be a ring with an ideal I C R]xz]. It generally does not hold
Rlz]/T = (R/(RNT))[x].

For example, consider R = C and I = (z — 1). Then R[z]/I = C and (R/(RN
I))[z] = Clz].

Lemma 18. Let m C R be a maximal ideal of a ring R. For any u € R\ m, there exists
r € R, such that ru + 1 € m. Moreover, there exists ' € R, such that »u—1 € m.

Proof. Since m C (m,u), the maximality of m yields the existence of a € m, r € R, such
that a +ru =1, so (—r)u+ 1 € m, proving the first claim. The second follows from the
first by multiplying with —1. ]

Lemma 19. Consider the ideal I .= Klzy,...,z,| C Klzy,...,z,| with initial ideal I,.
The function
(Vi Klxg, ..oy z0) = Kz, o020, [ fi

is a group homomorphism. In particular, for any multiplicative subgroup M C Kz, ..., z,)
(e.g. the unit group of a subring or an ideal), a group homomorphism is given by

(')in M — K[xl,...,xn]x, f —> fin-

Proof. For two monomials f,g € K[zy,...,1,]\{0}, it holds deg(f)-deg(g) = deg(f+g),
so for arbitrary f,g € K[z1,...,x,] \ {0}, the nonzero homogeneous component of f - g
of least degree is precisely fi, - gin. O

Lemma 20. Let [ C Klzy,...,x,] be an ideal with initial ideal I,,. If I = (f) is a
principal ideal, then I;, = (fin).



Proof. Let g € I\ {0}, s0 g = f-h for some h € K[z1,...,2,) \{0}. BY[19} gin = fin - htm,
SO Gin € (fin). By definition of [, this implies I;, C (fin)-
On the other hand, it is clear that fi, € Iy, so (fin) C . O

Lemma 21. Let R be a ring with / C R an ideal. Then (I)p;) N R = 1.

Proof. Clearly, I C (I)gj;) N R.
On the other hand, let f = Y1, gia; € (I)g N R with g; = 27" r; ;27 € R[] and

a; € 1. It follows .
B Ene

i=1 \j=0 i=1

for some h € R[z]. Because f € R, it follows f =>""  r;oa; € I. O

8.1 Noetherian integral domain of Krull-
dimension 1

Let R be a Noetherian integral domain with dim(R) = 1. Prove that the map
¢ : Quot(R)* — Z, g — length(R/(p)) — length(R/(q))

is a homomorphism of group. Proceed as follows:
(a) Prove first that d(a) := length(R/(a)) < oo for every a € R\ {0}.
(b) Next, prove that d(ab) = d(a) + d(b) for every a,b € R\ {0}.

(c) Finally, prove that ¢ is a well-defined group homomorphism.

(a) Notice that it does not matter for the length whether one views R/(a) as a module
over itself or as an R-module, since the submodules coincide in both cases.
Every nonzero prime ideal in R is maximal, because R is an integral domain and
dim(R) = 1. In particular, dim(R/(a)) = 0 for a € R\ {0} and because R is
Noetherian, so is R/(a). By theorem 2.8, R/(a) is Artinian, thus theorem 12.3(b)
shows that R/(a) has finite length.

(b) Consider the surjective homomorphism
¢: R/(ab) = R/(b), x+ (ab) — x + (D)

with kernel (b)/(ab). It follows R/(ab) / (b)/(ab) = R/(b) by the homomorphism

theorem and theorem 12.3(c) shows that d(ab) = length((b)/(ab)) + d(b). The
R-module homomorphism

R — R/(ab), v+ rb—+ (ab)

consisting of first multiplying by b and then the projection onto R/(ab) has image
(b)+ (ab) and kernel (a), implying R/(a) = (b)/(ab) and thus showing the assertion.



(c) We first show that ¢ is well defined, so let g = Z—: € Quot(R)*, i.e. p¢’ = p'q. By
(b), this implies d(p) + d(¢') = d(p’) + d(q). It follows

Py - / no_ P’

¢ . =d(p) —d(q) = d(p') —d(d) = ¢( — |.
By (a), the image of ¢ lies in Z, so ¢ is well-defined.

To show that ¢ is a group homomorphism, we take §, zi/ € Quot(R)* and calculate
using (b):

o(L+2) = aton!) — atan)) = ) + ) — dta) — ) = o) + o).

q ¢ q q

8.2 Length and exact sequences
Let R be a ring and

L2 M, 25 M, 2 {0}

{0} 22 a2 M, 22
an exact sequence of R-modules. Assume that length(M;) < oo for all i €
{1,...,n}. Prove that

n

> (—1)"length(M;) = 0.

=1

We use induction on the length of the exact sequence n.
Base case: For n = 1, it holds M; = 0, since ¢y = ¢,,_1 has to be surjective. Since
My = 0, the assertion is clear.
Inductive step: Since ¢, is surjective, it holds

Mn = Mn—l/ker(¢n—1) - Mn—l/im(qbn—Z)y

which implies

length(M,,_1) = length(M,,) + length(im(¢,_2)). (%)
Now let n > 2 and assume that the claim holds for n — 1. Consider the exact sequence
of length n — 1

{0} 2% My 25 My 2 - 2 i (g,0) -2 {O).

By the inductive hypothesis and (%), it follows

n—2 n

0= Z(—l)i length(M;) + (—1)" ' length(im(¢,_»)) = Z(—l)ileng‘ch(]\/[i).

i=1 i=1



8.3 Easier computation of the Hilbert—Samuel
function

Let m C R be a maximal ideal of a ring R and consider the localization R, with
maximal ideal m,,. Show that for every ¢ € IN, there is an isomorphism

m;n/mﬂ-l ~ mi/mi—H
of R-modules. With K := R/m = R,,/m,,, show that the isomorphism is K-linear,

so dimg (m! /mitt) = dimg (m?/m*t).

First notice that (m?) = (m,,)’, i.e. the order does not matter.
For © € IN, consider the R-module homomorphism

i+1

m )

¢:m' S m —m /m
where € : m’ — m!,,a — ¢ is the canonical map. We claim that the kernel of ¢ is m**!.
It is clear that m'*" C ker(¢). For the other direction, let x € ker(¢), i.e. £ € mi!. This
means that there exist p € m™', u € R\ m, such that £ = £, so for some v’ € R\ m, it
holds w'uz = u'p. By [18] there exists r € R and a € m, such that ru'u — 1 = a, so

r=x-1=x-(rvu—a)=rup—xacmth
Moreover, ¢ is surjective: Let y = @ +mitt e mi /mitt with a; € m, uw € R\ m.
Since every element in m! /m! is a finite sum of elements of the form of y, it is enough
to show that there is x € m?, such that ¢(x) = y. By definition, ¢(z) = y is equivalent to

_TI7? . i
ur Hj:l a; _T_ [T @ c mit!
u 1 u m

Tryz = z- Hj'=1 a; € m* with z € R. Then we need to find z € R, such that uz —1 € m.
The existence of such a z is guaranteed by [18], so ¢ is indeed surjective.

By the homomorphism theorem, there is an isomorphism of R-modules m‘/m'*!
mt /mitt,

That the isomorphism is R/m-linear can either be checked directly or can be seen in
a more general setting: Consider the full subcategory C of the category of R-modules,
consisting only of those R-modules M, which satisfy m C Ann(M). Denote the category
of R/m-vector spaces as D. Then there is a functor F' : C — D, which maps an R-module
with m C Ann(M) to the R/m vector space with the same underlying abelian group and
scalar multiplication given by k -z =r-x for k =r+m € R/m,r € R, x € M. An
R-module homomorphism f : M — N becomes R/m-linear, since for k =r +m € R/m,
r € R, x € M, it holds

>~

flk-a) = f(r-x) =rf(z) =kf(z).

This declares the action of F' on morphisms and at the same time proves the claim.



8.4 Associated graded ring and tangent cone

Let I C K[zy,...,x,] be an ideal and A = K|[xy,...,z,]|/I with initial form ideal
Iiy. Assume that I C (z1,...,2,) =: n and set m := n/I, which is a maximal ideal
in A. It can be shown that there is an isomorphism

K[.I‘l, 500 ,xn]/]in = gI‘(Am),

which sends homogeneous elements to homogeneous elements of the same degree.
You may use this result without a proof.
Determine the associated graded ring of the localization R; := C[X;]() of the
coordinate ring at the origin for the following affine varieties X; C C?:

(a) X1 =V(af—a3),

(b) Xa = V(a3 — af(z1 + 1)),
(c) X3 =V (22— z1(22+1)).

X1 XZ X-3

For an affine variety X C C?, denote the corresponding ideal with I := I(X) and set
A = C[X] = Clz,y]/I. Withm = I({0,0})/] = (z+L,y+1I) C Aand R = A, =
C[X](0,0), the hint shows that C[z,y]/l;n = gr(R), so in order to calculate gr(R), it is
enough to determine Iy,. If I = (f) is principal, it holds I}, = (fi) by .
This will be used in the following.

(a) Tt holds I = (a3 — x3), so [}, = (23) and gr(R;) = Clzy, 2]/ (23).
(b) Tt holds I = (23 — 23 + 23), so Ii, = (23 — 23) and gr(R,) = Clxy, 23]/ (23 — 23).

(c) It holds I = (23 — a3 — x1), so L1, = (x1) and gr(Ry) = Clxy, zo]/(71) = C[z].



8.5 Hypotheses of Krull’s intersection theorem

Let C°(R, R) be the ring of all continuous (with respect to the Euclidean topology)
functions R — R and consider the ideal

I={feC’R,R): 3U CRopen:0€U,fly =0}

with R = CO(R,R)/[.

(a) Prove that R is a local ring with maximal ideal
m:={f+1:feC’R,R),[(0)=0}.

Hint: Recall that a ring S is local with maximal ideal n if and only if every
x € S\ nis invertible.

(b) Prove that there exists a nonzero element in R which lies in m” for every
n € IN.

(c) Is R Noetherian?

The equivalence classes in R of two functions f,g € C°(R, R) are the same if and only
if f —g € I;ie. if there is an open neighborhood around 0, such that f and g agree on
it.

(a) We show that every f € R is invertible. Let f +1 € R\ m, i.e. f(0)# 0.
Since f is continuous, there exists € > 0 such that f(x) > 0 for all € [—¢, €].
The function

flme) z<—c
g:R—>R, 2= f(z) z€(—€¢)
fle)  xz=ze

is continuous and satisfies (f — g)|(—ce) =0,50 f —g € and f+ 1 =g+ I. Since
g(x) # 0 for all x € R, g is invertible and thus the same holds for f.

(b) Clearly, 0 # || € m. Since {/|z| € m for all n € IN, it follows |z| € m™ for every
n € IN.

(c) If R was Noetherian, then Krull’s intersection Theorem would imply

() m" = {0},

nelN

which contradicts (b), so R is not Noetherian.



8.6 Polynomial ring over a regular ring

(a) Let R be a ring, P € Spec(R) and @ = (P)gp. Prove that @ is a prime

(b) Let R be a regular local ring with maximal ideal m and let P C R[z] be a

(d) Prove that Z[xy,...,z,] is regular for every n € IN. So in particular, Z is

ideal with ht(P) < ht(Q).

prime ideal with m C P. Prove that the localization R[z|p is a regular local
ring, as well.

(c) Let S be a Noetherian regular ring. Show that S[z] is also regular.

regular.

(a)

Consider the R-algebra homomorphism
¢ : Rlz] = (R/P)[x], x> x,

(it takes the coefficients of a polynomial mod P). It is surjective and has kernel @,
so R[z]/Q = (R/P)[z] and we conclude that () is prime.
Moreover, a chain of prime ideals in R of length n

Pﬂgplggpnflgpn:P
gives rise to a chain of prime ideals in R[x] of the same length

(Po)r) & (P)piy & & (Pam1) g & (Po) i) = (P) gy
and the inclusions are strict by 21} thus ht(P) < ht(Q).

Let n :== ht(m) € IN and k = ht(P) € IN. We have to show that Pp C R[z]p
can be generated by k elements and it is enough to prove the same statement for
P C Rjx].

Because any regular ring is by definition Noetherian, corollary 7.13 implies that
dim(R[z]) = dim(R) +1 = n + 1. In particular, ¥ < dim(R[z]) = n + 1. By
(a), I = (m)g) C R[x] is a prime ideal with ht(/) > n. Since R is regular, m is
generated by n elements, and so is I. By corollary 7.6, this implies ht(/) < n, so
ht(I) = n.

If Kk =n, then P =1 and P is generated by k elements. Therefore, we may assume
k =n+ 1. With the same isomorphism as in (a), we see R[x]/I = (R/m)[x]. Since
P/Iis anideal in R[x]/I and (R/m)[z] is a principal ideal domain, P/I is generated
by a single (irreducible) polynomial, so P is generated by n + 1 elements.

Let P € Spec(S[x]), I == SN P € Spec(S) and U := S\ I, which is a multiplicative
submonoid of S and of S[z]. By proposition 6.3(g), it holds S[z]p = (S;[z])y-1p.
Because S; is local with maximal ideal I; and I; C U' P, (b) shows that (S7[z])y-1p
is a regular local ring, so the same holds for S[z]p.

Let P € Spec(Z). If I = (0), then Zp = Q, which is normal. Otherwise, I = (p)
for some p € Z and ht(P) =1, Pp = (%), showing that 7 is regular.
By (c), Z[z] is regular and by iterating, the same follows for Z[z1, ..., x,].



8.7 Example of a singular locus

Determine the singular locus of the following affine varieties in C2.
(a) {(z,y) € C*:2° =92},

(b) {(z,y) € C?*: y* =2*(x +1)}.

We will use the Jacobian Criterion (theorem 13.10) and the notation from the lecture

notes.

()

We have f = 2® —y? € C[z,y] and I = (f), which is prime, because f is irreducible.
Thus @ = I and ht(Q) = 1 since {0} € Q € (x,y) and dim(Clz, y]) = 2.
For (a,b) € C? with f(a,b) = 0, consider the maximal ideal P = (z —a,y —b) D I.
Then

Jr= (32> —-2y)=(3¢*> —2b) mod P,
so rank(J; mod P) < ht(Q) if and only if (a,b) = (0,0). Therefore, the singular
locus is {(0,0)}.

Analogously to (a), let f = 2*(x + 1) — y* € C[z,y] and I = (f), which again is
prime, so @ = I with ht(Q) = 1.

For (a,b) € C? with f(a,b) = 0, consider P := (x —a,y —b) D I.

We calculate

Jr = <a:(33:+2) —2y> = (a(3a+2) —2b> mod P,

so rank(J; mod P) < ht(Q) =1 if and only if (a,b) € {(0,0),(—3,0)}.
Since f(—%, 0) # 0, the singular locus amounts to {(0,0)}.

8.8 Elliptic curves

Let K be an algebraically closed field of characterstic # 2 and take a,b € K. Show
that the cubic curve £ C K? given by the equation

is nonsingular if and only if 4a® + 27b% # 0.
The above equation is called Weierstrass normal form of a cubic curve. If E is
nonsingular, then it is called an elliptic curve.

2 3
Ty =177 +ar, +b

The polynomial 23 + ax + b + x5 € K[x1,xs] is irreducible for every a,b € K, so
K[E] = K[xy, 23]/ (23 + axy + b+ 23).
Let f(x1) = 23 + ax; + b € K|z1] be a polynomial. By the Jacobian criterion, a point
(x,y) € E is singular, if and only if f'(x) = 0 and y = 0. Thus E is singular if and only
if there is © € K with f(z) = f'(z) = 0, which is equivalent to = being a double root of
f. This, in turn, is equivalent to the discriminant being 0, which precisely amounts to
the given equation.



8.9 Example of an associated graded ring

Find a well-known ring which is isomorphic to gr(Z,)).

Zy) is a Noetherian, local ring with maximal ideal m = (p) ).
One way to determine an isomorphic ring to gr(Zy,)) is to look at its graded components.
The d-th graded component gr(Z,))q is isomorphic as a group to m?/m+!. By a previous
exercise, m¢/mdtt = (p)?/(p)?** as groups. Since the surjective group homomorphism

Z — (p)* = (p)*/(p)™, a > ap® + (p)**

has kernel (p), it follows gr(Z,))s = Z/(p) as groups.
Alternatively, work with the group homomorphism

d d
a a
Z — m® — m?/m a Pa Pa, v

1 1
and for bijectivity argue similarly to the proof of that exercise.
Therefore, gr(Z)) = B, ,Z/(p) as groups (not as rings). Notice that @, Z/(p) is
as a group isomorphic to IF,[z]. The multiplication of gr(Z) is given for homogeneous
elements a + (m) € gr(Zy))i, b+ (m) € gr(Zy)); by a-b = ab+ (m) € gr(Zy))ivs
and this uniquely determmes the ring structure of gr(Zy)). But the multiplication of
homogeneous elements in IFp[z] works in the same way, suggesting gr(Z) = F,[z] as
rings.
More precisely, the group isomorphism Fplz] — gr(Z,)), which maps a homogeneous
element ax? € IF,x? of degree d to ap’t? € m%t?+(m) is multiplicative on the homogeneous
elements, so it is a ring isomorphism showing gr(Z,)) = Fplx].
In particular, we showed Z,/(p) ) = ) as rings.
Alternatively, notice that Z[mt| = Z, )[pt] 80 81(Zp)) = Zp)pt]/ (M) z, 01
Intuitively, pt + (m)z,, ) acts as an inderminant; it is not transcendental over Z), but
when embedding I, into gr(Z) via the ring homomorphism a — a + (m )Z(p) [pt] (lt even
holds gr(Zy)o = IFp, see previous proof), it is clear that pt + (m)z,, ) is transcendental
over IF,. Therefore, an injective IF)-algebra homomorphism is given by

¢ Fple] = gr(Zp)), == pt+ (m)z, pi-

To show that ¢ is surjective, let §p™t? + (m)z, p € gr(Zy))a homogeneous with a € Z,
beZ\ (p),deN. Let ' =a modpelF,, ) =b modpeF,\ {0}. Then

a
_pdtd + (m) Zp)[pt]»

-1 4 dyd _
¢<a'-b' - > = b/pt + (M)z,pn = 7

because ab' — a'b € (p) and thus (2 — 9)pdtd = 2b_abpdid ¢ € (M)z,) pt]-
An alternative, similar to the previous proof, is to consider the surjective ring homomor-
phism

U Lgypt] = Fplz Zakpt »—>Zakx

which has kernel ker(y)) = (p)z,[pr), because f =3/ Oak(pt) € ker(v) satisfies p|ay for
all k € {0,...,n}, so p|f. Therefore, ¢ induces an isomorphism gr(Zy)) = Fplx].



Mixed Problems

9.1 Rings and Fields

(a) Let A C B be integral domains and suppose that B is integral over A. Show
that A is a field if and only if B is a field.

(b) Let R be a Noetherian local ring. Show that m/m? = 0 if and only if R is a
field.

(c) Let R be a Noetherian ring. Show that 1/(0)" = (0) for some n € Ns.
(d) Find a counterexample for the previous statement if R is not Noetherian.

(e) Find a ring R in which there is an element r € R, which is a zero divisor, but
not contained in any minimal prime ideal.

(f) For a ring R and any n € N5, a prime ideal P C R satisfies

VP =P

(a) Since B is integral over A, it holds dim(A) = dim(B). Because for an integral
domain R, it holds

R is a field <= (0) is the unique prime ideal <= dim(R) = 0,
the claim is clear.

(b) One direction is obvious, the other follows from Nakayama’s Lemma.

(c) This follows from lemma 2.6 (I = +/(0), J = (0)), since I is finitely generated,
because R is Noetherian.
Alternatively, a direct argument, which is very similar to the proof of lemma 2.6 can
be given: Since R is Noetherian, /(0) = (a4, ...,a,) is finitely generated. With
k=max(k;: i €{1,...,n}), n:=(n—1) -k + 1 has the desired property.

(d) A counterexample is given by K[z, o, x3,...]/(z1, 23, 13).
(e) For a field K, consider R = K|[z,y]/(x?, zy). The unique minimal prime ideal in R
is (T), but 7 & (7).

(f) Let x € VP, ie. there is k € IN such that z* can be written as a finite sum of
elements of the form [[}_, p; with p; € P. Thus 2* € P and since P is prime we

conclude = € P.
On the other hand, let z € P. Then z" € P", so x € v P™.



9.2 More dimensions

Compute the dimension of the following rings R:

(a) Clz,yl/ (),

The lemma [11] is very useful, especially in integral domains. It will be used without
further notice. Furthermore, in (a), (b) and (e), one can alternatively use theorem 5.13.

(a) Every prime ideal in the ring has to contain y, so (y) is a minimal prime ideal, but
not maximal. It follows dim(R) = 1.

(b) Since (z* — y?) is prime, but not maximal, it follows dim(R) = 1.

(c) R is generated as a K-algebra by elements of the form (0,...,0,1,0,...,0). Since
any such element is algebraic over K (it is a root of z* — x), it follows dim(R) = 0.
Alternative solution: Let P be a prime ideal in R. Since for [ =0 x K x ... X K,
J=Kx0x...x0,it holds I -J C P, it follows I C P or J C P. There are two
cases:

e If [ C P, then P/I is a prime ideal in R/I = [[-] K.
e If J C P, then R/J = K and thus P = J.

It follows inductively that any prime ideal is of the form 0 x ... x0x K x0x...x0
and thus all prime ideals are maximal, implying dim(R) = 0.

(d) Because i € C is integral over Z, dim(R) = dim(Z) = 1.

(e) Tt is clear that dim(R) < 2. Since w? —vw +u is prime (Gauss’s lemma in Q(v, w)),
the chain (w? —vw + u) € (w,u) € (u, v, w) shows that dim(R) = 2.

9.3 Some Computations
(a) Compute the length of Z/247.
(b) Find VT for I = (xy?, 2(x —y)) C C[z,y).

(c) Compute the dimension of X = V(2? + y?) in C2.
)

(d) Compute the nilradical of Z/4Z.

(a) The submodules of Z /247 are precisely the ideals, which correspond to those ideals
in Z, which contain 24. Since 24 = 23 - 3, it follows length(Z/247.) = 4.



(b) Since V(I) = {(0,k) : k € C}, Hilbert’s Nullstellensatz yields /I = I(V(I)) = ().

(¢) The minimal prime ideals over f = 2?4+ y* = 2 — (iy)? are (z + iy) and (z — iy).
Since dim(C|z,y]) = 2 and (f) # (0), dim(K[X]) < 1. Because (x+1iy) is contained
in the maximal ideal (x,y), it follows dim(K[X]) = 1.

AN

(d) The unit group of Z/47 is {1, 3}; and the other elements are nilpotent, so 1/(0) =
{0,2}.

9.4 Singular Locus

Compute the singular locus of V(y? — 23) in C? and prove that its normalization
is isomorphic to a polynomial ring in one variable.

By the Jacobian criterion, the singular locus consists of those points (x,y) € C? with
(=322, 2y) = (0,0), i.e. the only singular point is (0,0).
The localizations at all nonzero points is regular, so in particular normal and it fol-

lows K[X] C K[X]@, for (z,y) € €*\ {(0,0)}. This inspires considering z == £ €
Quot(K[X]) and dividing 3> — 7> = 0 by Z* reveals that 22 — 7 = 0, so K|[z] is integral
over K[X].

It is left to show that z is transcendental over K, because this implies that K|z] is iso-
morphic to a polynomial ring, so it is factorial and thus normal, which shows that K|z]
is the normalization of K[X]. If 2 was algebraic, then the same would hold for z? = T,
but 7 is not algebraic over K:

This can be seen by noting that a polynomial with coefficients in K and ¥ as a root needs
to be a multiple of y? — 3, thus has to be 0 by comparison of y-degrees.

Alternatively, consider the K-algebra homomorphism
Klz,y] = K[z], v+ 2%, y > 2?,

which has kernel (y* — 23), so K[X] is isomorphic to a subring of K[z]. The image of Z
under that isomorphism is 22, which is transcendental over K.
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