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Zusammenfassung

Das Wechseln der anreichernden monoidalen Kategorie spielt eine wichtige Rolle, um den Zusammen-

hang zwischen Kategorien, die über verschiedenen monoidalen Kategorien angereichert sind, zu verste-

hen. Diese Arbeit beschäftigt sich mit diesem Wechsel für Kategorien, welche über monoidalen (strik-

ten) 2-Kategorien angereichert sind. Wir zeigen, dass die entsprechende Konstruktion wohldefiniert ist.

Außerdem beweisen wir, dass dies einen strikten 2-Funktor von der Kategorie der (kleinen) monoidalen 2-

Kategorien zur Kategorie der (kleinen) Kategorien darstellt. Danach betrachtenwir dargestellte 2-Funktoren

V(𝐶,−) : V → Cat und zeigen, dass die Struktur, welche den Wechsel der anreichernden monoidalen

Kategorie entlang dieses Funktors erlaubt, genau der eines Komonoids auf dem darstellenden Objekt 𝐶

entspricht. Als Korollar sehen wir, dass eine kanonische natürliche Transformation (−)0 ⇒ ChEn(−, F )
von dem zugrunde liegenden Bikategorienfunktor (−)0 zu dem “Wechsel der Anreicherung” Funktor ex-

istiert. Schließlich beschreiben wir, wie eine erweiterte Version der Bikategorie der Spanne aus derselbi-

gen formal konstruiert werden kann, indem man in geeigneter Art und Weise die anreichernde monoidale

Kategorie wechselt.

Abstract

Change of enrichment plays an important role in understanding the relationship between categories en-

riched over distinct monoidal categories. In this thesis, we consider change of enrichment for categories

enriched over monoidal (strict) 2-categories and show that the corresponding construction is well-defined.

Furthermore, we prove that it yields a strict 2-functor from the category of (small) monoidal 2-categories

to the category of (small) categories. We then consider represented 2-functors V(𝐶,−) : V → Cat and

demonstrate that the structure needed to change enrichment along these functors is equivalent to the

structure of a comonoid on the representing object 𝐶 . As a corollary, we see that there is a canonical

natural transformation (−)0 ⇒ ChEn(−, F ) from the underlying bicategory functor (−)0 to the functor

that changes the enrichment along a fixed functor F . Finally, we describe how an extended version of the

bicategory of spans can be formally constructed via change of enrichment.
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1 Introduction

It is a common phenomenon that categories arising in a mathematical theory are not just conventional

categories, but admit additional structure on their “hom-sets”. A well-known example is the (Ab, ⊗Z,Z)-
enriched category Mod 𝑅 of modules over a fixed ring 𝑅, where (Ab, ⊗Z,Z) is the monoidal category of

abelian groups equipped with the tensor product ⊗Z as its monoidal product. The fact that any closed

symmetric monoidal category (in particular any cartesian closed one) is enriched over itself yields many

more examples, like the monoidal category of vector spaces (VectK, ⊗K,K) over a field K, the cartesian

monoidal category of (small) categories (Cat ,×, {∗}) or a convenient subcategory (see [Ste67]) of the cat-

egory of topological spaces Top.
Originally conceived independently by Bénabou andMaranda [Bén65; Mar65], the language of enriched

category theory captures these and many more examples. However, in many situations, it is necessary or

convenient to change the monoidal category over which one considers enrichments in. This change of
enrichment along a lax monoidal functor (V, ⊗,1) → (W, ⊗,1) was first considered in [EK66]. Because

such a monoidal category is also called base of enrichment, it is common to refer to this procedure as change
of base, but in order to avoid ambiguity, we will exclusively refer to it as change of enrichment.
A trivial example of this is that a category enriched over anymonoidal category (V, ⊗,1) should have an

underlying ordinary category (i.e. a (Set ,×, {∗})-enriched category). This idea is made precise by changing

the enrichment fromV to Set (see Example 2.1.2). A more sophisticated instance emerges in the theory of

(∞,1)-categories, where both topologically and simplicially enriched categories are considered as models

for higher categories. In this case, change of enrichment provides a way to translate between these two

points of view (see Example 2.1.5).

In this thesis, we study change of enrichment for categories enriched over monoidal (strict) 2-categories.

Our main source of motivation is the case of the cartesian monoidal 2-category (Cat ,×, {∗}). Because a
category enriched over the cartesian monoidal 2-category (Cat ,×, {∗}) is a bicategory, such a theory in

particular yields a way to systematically obtain bicategories from other bicategories by “replacing their

hom-categories” (see Example 2.4.2). Since we can view any monoidal category as a monoidal 2-category

with only identity 2-cells, enrichment over monoidal 2-categories encompasses enrichment over ordinary

categories as a special case.

Chapter 2 starts by recalling change of enrichment for conventional categories and collecting some of the

basic concepts of bicategory theory that we will require. We then proceed to define monoidal 2-categories

and the functors between monoidal 2-categories along which change of enrichment can be performed.

Since these were the lax monoidal functors in the case of enrichment over ordinary categories, it is not

too surprising that the corresponding notion for monoidal 2-categories is that of a lax monoidal functor

of 2-categories (which we call, more suggestively, changer). Having established the required terminology,

we perform our main construction, namely Construction 2.4.1. We finish the chapter by describing (see

Theorem 2.6.2) change of enrichment over monoidal 2-categories as the action on hom-category of a strict

2-functor

En: 2Cat lax
⊗ → Cat , V ↦→ V-Cat .

In Chapter 3, we highlight a particular class of changers, namely the changers V(𝐶,−) : V → Cat
represented by a fixed object 𝐶 ∈ V , where (V, ⊗,1) is a monoidal (strict) 2-category. Establishing a

correspondence between represented changers and comonoids (see Theorem 3.1.3) in particular yields

some interesting examples of change of enrichment over monoidal 2-categories. For instance, the afore-

mentioned underlying category construction extends to an underlying bicategory functor when enriching

over monoidal 2-categories.
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In the final Chapter 4, we apply the developed theory to the bicategory of spans, producing an extended

bicategory of spans, essentially by formally replacing the 2-cells:

𝑋

𝐴 𝐵

𝑌

{

𝑋

𝐴 𝑍 𝐵

𝑋 ′.

Such iterated spans are of interest in the context of extended topological field theories (see [Hau18, Sec

1.2]) and our application can be seen as the “bicategorical version” of this idea. After defining the category

and bicategory of spans, we formally derive the extended bicategory of spans (see Definition 4.3.7) from

the ordinary one via change of enrichment along the spanification functor from Definition 4.3.3. We finish

by demonstrating how some of the properties of the bicategory of spans directly translate to the extended

bicategory due to the functoriality of change of enrichment. Understanding how this construction can be

perceived as a special case of change of enrichment served as one of the author’s primary motivations for

developing the theory presented in this text.
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2 Change of Enrichment for Categories enriched
over monoidal 2-Categories

We start by describing change of enrichment over ordinary monoidal categories, which will serve as in-

spiration for our generalization to enrichment over monoidal 2-categories. After establishing the main

construction (Construction 2.4.1), we use the remaining part of the chapter to prove the functoriality of

change of enrichment, culminating in Theorem 2.6.2.

2.1 Change of Enrichment for ordinary enriched Categories

It is a basic observation (first studied in [EK66, Prop 6.3] and reviewed e.g. in [Rie14, Lem 3.4.3]) that

a lax monoidal functor 𝐹 : V → W between two monoidal categories (V, ⊗,1) and (W, ⊗,1) induces
a canonical way to transform a V-enriched category into aW-enriched one. This process is known as

change of enrichment (or change of base).

Construction 2.1.1 (Change of Enrichment). Let (V, ⊗,1) and (W, ⊗,1) be two monoidal categories

and 𝐹 : V →W be a lax monoidal functor between them. Then a category CV enriched overV induces

a category CW enriched overW as follows:

1. The objects are those of CV and the hom-objects are induced by 𝐹 : CW (𝑋,𝑌 ) := 𝐹 (CV (𝑋,𝑌 )).

2. The unit is given by the composition

1 𝐹 (1) 𝐹 (CV (𝑋,𝑋 )) .
𝐹 (id𝑋 )

3. The composition morphism in CW is defined to be

𝐹 (CV (𝑌, 𝑍 )) ⊗ 𝐹 (CV (𝑋,𝑌 )) 𝐹 (CV (𝑌, 𝑍 ) ⊗ CV (𝑋,𝑌 )) 𝐹 (CV (𝑋,𝑍 )).
𝐹 (◦)

The construction, while quite straightforward, is surprisingly useful.

Example 2.1.2. For instance, changing the enrichment allows us to extract the underlying category of

a category enriched over a monoidal category (V, ⊗,1) using the functor 𝐹 = Hom(1,−) : V → Set
represented by the unit object 1. See Definition 3.2.2 for an extension of this idea.

An important property is that change of enrichment can be viewed as a 2-functor, which is shown in

[Cru08, Thm 4.3.2]. Before stating the theorem, we introduce the necessary categories.

Definition 2.1.3. We define the following categories.

1. Cat is the 2-category consisting of the (small) categories, functors and natural transformations.

2. 2Cat denotes the 2-category of (small) 2-categories, 2-functors and 2-natural transformations.

3. Cat lax
⊗ is the 2-category of (small) monoidal categories, lax monoidal functors and monoidal natural

transformations.

4. For a monoidal category (V, ⊗,1), the 2-category V-Cat consists of the (small) V-enriched cate-

gories, theV-enriched functors and theV-enriched natural transformations.
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Theorem 2.1.4. Change of enrichment extends to a 2-functor

Cat lax
⊗ → 2Cat , V ↦→ V-Cat .

Our version of this theorem for categories enriched over monoidal 2-categories is Theorem 2.6.2. An

immediate consequence of the previous theorem is that adjunctions are preserved, giving rise to multiple

applications.

Example 2.1.5.

1. Let Top denote the category of compactly generated Hausdorff spaces and sSet the category of sim-

plicial sets. The adjunction

sSet Top

| · |

Sing

⊣
between geometric realization |·| : sSet → Top and its right adjoint, the total singular complex func-

tor Sing : Top → sSet , is of fundamental importance in the theory of (∞,1)-categories. Because both
functors preserve finite products and are thus strong monoidal functors (in particular lax monoidal),

this induces by functoriality of change of enrichment an adjunction between the category of sim-

plicially enriched categories and the topologically enriched ones
1
. This adjunction characterizes

the relationship between the theory of simplicially enriched categories and that of topologically en-

riched categories, both of which have been considered as models for higher category theory [Lur09,

Rem 1.1.4.3].

2. The nerve functor 𝑁 : Cat ↩→ sSet admits a left adjoint, which is the homotopy category functor

ℎ : sSet → Cat , obtained via left Kan extension of Δ→ Cat along the Yoneda embedding Δ ↩→ sSet

sSet Cat .

ℎ

𝑁

⊣

As both of these functors preserve finite products, we obtain an adjunction between categories en-

riched over simplicial sets and categories enriched over Cat (i.e. strict 2-categories) [RV22, Exa

A.7.10].

3. The localization functor sSet → Ho(sSet ) into the homotopy category of spaces Ho(sSet ) can be

shown to be lax monoidal (see [Rie14, Cha 10]), so any simplicially enriched category induces a

category enriched over Ho(sSet ). This observation can be used to define DK-equivalences as those

simplicial functors whose induced Ho(sSet )-enriched functor is an equivalence of Ho(sSet )-enriched
categories.

2.2 Bicategorical Preliminaries

As a first step towards categories enriched over monoidal 2-categories, we recall the notion of a bicategory.

This concept, originally introduced by Bénabou in 1967 in [Bén+67], was the first precise notion of a weak

higher category; that is, a category-like structure with morphisms between morphisms for which relations

like associativity are only required up to coherent isomorphism.

Definition 2.2.1. A bicategory C consists of the following data:

1. A collection Ob(C) whose elements are called objects or 0-cells.

1
It is common to speak of topologically enriched categories even if one only enriches over a convenient subcategory.
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2. For each pair𝑋,𝑌 ∈ Ob(C), a category C(𝑋,𝑌 ), called hom-category. Its objects are called 1-cells and
the morphisms are called 2-cells. The composition of morphisms in this category is called vertical
composition.

3. For each 𝑋 ∈ Ob(C), a special 1-cell id𝑋 ∈ C(𝑋,𝑋 ), called the identity 1-cell of 𝑋 .

4. For each triple 𝑋,𝑌, 𝑍 ∈ Ob(C), a functor

• : C(𝑌, 𝑍 ) × C(𝑋,𝑌 ) → C(𝑋,𝑍 ),

which encodes the horizontal composition of morphisms. The action of this functor on morphisms

(2-cells) is usually denoted by ∗.

5. For every 𝑋,𝑌 ∈ Ob(C), two natural isomorphisms

𝜌 : − •id𝑋
�

=⇒ idC(𝑋,𝑌 ) , 𝜆 : id𝑌 • −
�

=⇒ idC(𝑋,𝑌 ) .

𝜆 is called left unitor and 𝜌 right unitor.

6. For all𝑊,𝑋,𝑌, 𝑍 ∈ Ob(C), a natural isomorphism 𝛼 (called associator):

(C(𝑌, 𝑍 ) × C(𝑋,𝑌 )) × C(𝑊,𝑋 ) C(𝑋,𝑍 ) × C(𝑊,𝑋 )

C(𝑊,𝑍 )

C(𝑌, 𝑍 ) × (C(𝑋,𝑌 ) × C(𝑊,𝑋 )) C(𝑌, 𝑍 ) × C(𝑊,𝑌 ) .

•×idC(𝑊,𝑋 )

�

•

idC(𝑌,𝑍 )×•

•

𝛼

This data must make the following diagrams commute for all 1-cells 𝑓 , 𝑔, ℎ, 𝑘 :

1. Pentagon identity:

(𝑘 • ℎ) • (𝑔 • 𝑓 )

((𝑘 • ℎ) • 𝑔) • 𝑓 𝑘 • (ℎ • (𝑔 • 𝑓 ))

(𝑘 • (ℎ • 𝑔)) • 𝑓 𝑘 • ((ℎ • 𝑔) • 𝑓 );

𝛼𝛼

𝛼∗id𝑓
𝛼

id𝑘∗𝛼

2. Triangle identity:
(𝑔 • id) • 𝑓 𝑔 • (id • 𝑓 )

𝑔 • 𝑓 .

𝛼

𝜌∗id𝑓 id𝑔∗𝜆

A bicategory for which 𝜆, 𝜌 and 𝛼 are identities is called a (strict) 2-category.2

Example 2.2.2.

1. A 2-category can be equivalently described as a Cat -enriched category, where Cat denotes the cat-

egory of (small) categories. The archetypal example of a 2-category is Cat itself. Its objects are the

(small) categories, its 1-cells are functors and its 2-cells are natural transformations.

2
For us, a 2-category is strict by default and we call the weak version a bicategory. Note that parts of the literature refer to

bicategories as 2-categories and to 2-categories as strict 2-categories.
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2. A bicategory C with only one object ∗ is the same as a monoidal category. Here the category under-

lying the monoidal category is defined to be C(∗, ∗) and the monoidal product is given by •. This
process of viewing a monoidal category as a bicategory with one object is called delooping.

3. Any ordinary category can be viewed as a 2-category whose only 2-cells are identities.

4. A more sophisticated example is given by the bicategory of spans, which we formally construct in

Definition 4.2.6.

The following bracket notation for functors induced by the universal property of the product in Cat will
prove useful.

Notation 2.2.3. For 𝑖 ∈ 𝐼 , let 𝐿𝑖 : D → E𝑖 be a functor. We write

[𝐿𝑖]𝑖∈𝐼 : D →
∏
𝑖∈𝐼
E𝑖

for the unique functor satisfying 𝜋 𝑗 ◦ [𝐿𝑖]𝑖∈𝐼 = 𝐿 𝑗 for all 𝑗 ∈ 𝐼 . In other words, this is just the functor

induced by the 𝐿𝑖 from the universal property of the product in Cat .
Furthermore, natural transformations

D E𝑖

𝐾𝑖

𝐿𝑖

𝛼𝑖 { D ∏
𝑖∈𝐼 E𝑖

[𝐾𝑖 ]

[𝐿𝑖 ]

[𝛼𝑖 ]

as on the left for every 𝑖 ∈ 𝐼 , induce a natural transformation as on the right, characterized by the property

that 𝜋 𝑗 ◦ [𝛼𝑖]𝑖∈𝐼 = 𝛼 𝑗 for all 𝑗 ∈ 𝐼 . For a fixed index set 𝐼 and categories D, {E𝑖}𝑖∈𝐼 , this constitutes a
functor

[−]𝑖∈𝐼 :
∏
𝑖∈𝐼
[D, E𝑖] →

[
D,

∏
𝑖∈𝐼
E𝑖

]
.

We also introduce a particular notation for constant functors.

Notation 2.2.4. For two categories B and C and an object 𝑋 ∈ C, we write const(𝑋 ) : B → C for the

constant functor picking the object 𝑋 ∈ C and the identity id𝑋 . Moreover, for a morphism 𝑓 : 𝑋 → 𝑌 , we

denote the constant natural transformation by const(𝑓 ) : const(𝑋 ) ⇒ const(𝑌 ).

An important observation is that the pentagon and triangle identity of a bicategory can be stated purely

in terms of functors and natural transformations. This helps uncover the fact that a bicategory is just a

category suitably enriched over the monoidal 2-category (Cat ,×, {∗}), as we realize in Example 2.3.5.

Remark 2.2.5. The pentagon and triangle identity for a bicategory are equivalent to the commutativity

of the following diagrams:

1. Pentagon identity:

(− • −) • (− • −)

((− • −) • −) • − − • (− • (− • −))

(− • (− • −)) • − − • ((− • −) • −) .

𝛼◦(id×id×•)𝛼◦(•×id×id)

•◦(𝛼×idid )
𝛼◦(id×•×id)

•◦(idid×𝛼 )

This is a diagram in the category of functors C(𝑌, 𝑍 ) × C(𝑋,𝑌 ) × C(𝑊,𝑋 ) × C(𝑉 ,𝑊 ) → C(𝑉 ,𝑍 )
for objects 𝑉 ,𝑊 ,𝑋,𝑌, 𝑍 ∈ Ob(C).
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2. Triangle identity:

(− • id) • − − • (id • −)

•.

𝛼◦(id×[const(id),id] )

•◦(𝜌×idid ) •◦(idid×𝜆)

This is a diagram in the category of functors C(𝑌, 𝑍 ) × C(𝑋,𝑌 ) → C(𝑋,𝑍 ) for objects 𝑋,𝑌, 𝑍 ∈
Ob(C). We have used Notation 2.2.3 and Notation 2.2.4 and denoted the identity natural transfor-

mation of the identity functor by idid. ⃝

There exist multiple appropriate notions of morphisms between bicategories.

Definition 2.2.6. A lax functor 𝐹 : C → D between two bicategories C and D is the following data:

1. A function 𝐹 : Ob(C) → Ob(D) defining the action on objects.

2. For each pair of objects 𝑋,𝑌 ∈ Ob(C), a functor

𝐹 = 𝐹 (𝑋,𝑌 ) : C(𝑋,𝑌 ) → D(𝐹 (𝑋 ), 𝐹 (𝑌 )) .

3. For every object 𝑋 ∈ Ob(C), a 2-cell 𝐹id : id𝐹 (𝑋 ) ⇒ 𝐹 (id𝑋 ), called unity constraint.

4. For every triple of objects 𝑋,𝑌, 𝑍 ∈ Ob(C), a natural transformation

C(𝑌, 𝑍 ) × C(𝑋,𝑌 ) D(𝐹 (𝑌 ), 𝐹 (𝑍 )) × D(𝐹 (𝑋 ), 𝐹 (𝑌 ))

C(𝑋,𝑍 ) D(𝐹 (𝑋 ), 𝐹 (𝑍 ))

•

𝐹

•

𝐹×𝐹

𝐹•

called functoriality constraint.

It must make the following three diagrams commute (for 1-cells 𝑓 ∈ C(𝑊,𝑋 ), 𝑔 ∈ C(𝑋,𝑌 ), ℎ ∈ C(𝑌, 𝑍 )):

1. Associativity:
(𝐹 (ℎ) • 𝐹 (𝑔)) • 𝐹 (𝑓 ) 𝐹 (ℎ) • (𝐹 (𝑔) • 𝐹 (𝑓 ))

𝐹 (ℎ • 𝑔) • 𝐹 (𝑓 ) 𝐹 (ℎ) • 𝐹 (𝑔 • 𝑓 )

𝐹 ((ℎ • 𝑔) • 𝑓 ) 𝐹 (ℎ • (𝑔 • 𝑓 )) .

�

𝐹 (�)

𝐹•∗id𝐹 (𝑓 )

𝐹•

id𝐹 (ℎ)∗𝐹•

𝐹•

2. Unity:

id𝐹 (𝑋 ) • 𝐹 (𝑓 ) 𝐹 (𝑓 )

𝐹 (id𝑋 ) • 𝐹 (𝑓 ) 𝐹 (id𝑋 • 𝑓 )

𝜆

𝐹 (𝜆)𝐹id∗id𝐹 (𝑓 )

𝐹•

𝐹 (𝑓 ) • id𝐹 (𝑊 ) 𝐹 (𝑓 )

𝐹 (𝑓 ) • 𝐹 (id𝑊 ) 𝐹 (𝑓 • id𝑊 ) .

𝜌

𝐹 (𝜌 )id𝐹 (𝑓 )∗𝐹id

𝐹•

Furthermore, if the unity and functoriality constraint are isomorphisms, then 𝐹 is called a functor (be-
tween bicategories) or a pseudofunctor. If they are even the identity, then 𝐹 is called a strict functor.
In situations where confusion with the 1-dimensional setting may arise, we also say 2-functor instead of

functor.

Just like the pentagon and triangle identity in the definition of a bicategory can be stated purely in

terms of functors and natural transformations (see Remark 2.2.5), the same is true for the associativity and

unity diagrams for functors between bicategories. This point of view allows generalizing functors between

bicategories to functors between categories enriched over monoidal 2-categories (see Example 2.5.2).
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Remark 2.2.7. The associativity and unity diagrams can equivalently be described as diagrams of functors

and natural transformations:

1. Associativity:

(𝐹 (−) • 𝐹 (−)) • 𝐹 (−) 𝐹 (−) • (𝐹 (−) • 𝐹 (−))

𝐹 (− • −) • 𝐹 (−) 𝐹 (−) • 𝐹 (− • −)

𝐹 ((− • −) • −) 𝐹 (− • (− • −)).

𝛼◦(𝐹×𝐹×𝐹 )

•◦(𝐹•×id𝐹 ) •◦(id𝐹 ×𝐹• )

𝐹•◦(•×id) 𝐹•◦(id×•)
𝐹◦𝛼

This constitutes a diagram in the category of functorsC(𝑌, 𝑍 )×C(𝑋,𝑌 )×C(𝑊,𝑋 ) → D(𝐹 (𝑊 ), 𝐹 (𝑍 ))
for objects𝑊,𝑋,𝑌, 𝑍 ∈ Ob(C).

2. Unity:

id • 𝐹 (−) 𝐹

𝐹 (id) • 𝐹 (−) 𝐹 (id • −)

𝜆◦𝐹

•◦[const(𝐹id ),id𝐹 ]

𝐹•◦[const(id),id]

𝐹◦𝜆

𝐹 (−) • id 𝐹

𝐹 (−) • 𝐹 (id) 𝐹 (− • id) .

𝜌◦𝐹

•◦[id𝐹 ,const(𝐹id ) ]

𝐹•◦[id,const(id) ]

𝐹◦𝜌

Note that both of these diagrams live in the category of functors C(𝑋,𝑌 ) → D(𝐹 (𝑋 ), 𝐹 (𝑌 )) for
objects 𝑋,𝑌 ∈ Ob(C) and we e.g. have

id • 𝐹 (−) = • ◦ [const(id), 𝐹 ] . ⃝

With the lax functors as morphisms, the (small) bicategories form a category Bicat [Joh+21, Thm 4.1.30].

This also follows from the more general setting for categories and functors enriched over a monoidal 2-

category (Lemma 2.5.3).

2.3 Monoidal 2-Categories and Changers

We introduce the concept of a monoidal 2-category.

Definition 2.3.1. Amonoidal 2-category (V, ⊗,1) is a (strict) 2-categoryV together with

1. a (strict) 2-functor ⊗ : V ×V → V (calledmonoidal product);

2. an object 1 ∈ Ob(V) (called unit object);

3. a 2-natural isomorphism 𝛼 : (− ⊗ −) ⊗ − ⇒ − ⊗ (− ⊗ −) (called associator)

4. 2-natural isomorphisms 𝜆 : 1 ⊗ − ⇒ id, 𝜌 : − ⊗1⇒ id (called left and right unitor, respectively),

such that the underlying data (i.e. forgetting the 2-cells) (V, ⊗,1, 𝛼, 𝜆, 𝜌) forms a monoidal category.

A monoidal 2-category (V, ⊗,1) is called cartesian, if its monoidal product ⊗ is given by its 2-product

(Cat -enriched product) × : V ×V → V .

A monoidal 2-subcategory (B, ⊗|B×B ,1) ⊂ (V, ⊗,1) consists of a 2-subcategory B ⊂ V , such that ⊗
restricts to a 2-functor ⊗|B×B : B × B → B and such that 1 ∈ B.

Since a (strict) 2-category is the same as a Cat -enriched category, wemay alternatively regard amonoidal

2-category as a monoidal category which is Cat -enriched in a suitable sense.
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Remark 2.3.2. The definition of monoidal 2-categories is rather concise, since we are dealing with (strict)

2-categories instead of bicategories. The corresponding concept for bicategories is significantly more com-

plicated due to the many coherence relations imposed, details can be found in [Sta16, Def 4.4] or for the

case of semistrict monoidal 2-categories in [Cra98, Def 2.1]. A simpler notion of cartesian bicategories

was introduced in [CW87, Def 1.2]. The more general idea of monoidal (∞,𝑛)-categories has been gaining

significant attention due to its appearance in the cobordism hypothesis [Lur08, Thm 1.4.9]. ⃝

Example 2.3.3.

1. The most important example of a (cartesian) monoidal 2-category is the category of small categories

(Cat ,×, {∗}).

2. Any monoidal category can be viewed as a monoidal 2-category by considering it as a 2-category

with no non-identity cells.

Inspired by the intuition that an ordinary bicategory should be a category enriched over the monoidal

2-category (Cat ,×, {∗}), we define the notion of categories enriched over a givenmonoidal 2-category. The

definition essentially consists of combining the concept of an ordinary enriched category and a bicategory.

A more general notion of a (bi)category enriched in a monoidal bicategory has been suggested in [GS16,

3.1].

Definition 2.3.4. Let (V, ⊗,1) be a monoidal 2-category. A V-enriched category C consists of the

following data:

1. A collection Ob(C) whose elements are called objects or 0-cells.

2. For each pair 𝑋,𝑌 ∈ Ob(C), an object C(𝑋,𝑌 ) ∈ V .

3. For every 𝑋 ∈ Ob(C), a special 1-cell idC
𝑋
: 1→ C(𝑋,𝑋 ) inV , which is called the identity 1-cell of

𝑋 .

4. For each triple 𝑋,𝑌, 𝑍 ∈ Ob(C), a 1-cell

• : C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ) → C(𝑋,𝑍 )

inV , called horizontal composition.

5. For every 𝑋,𝑌 ∈ Ob(C), two invertible 2-cells

𝜌 :

(
C(𝑋,𝑌 ) � C(𝑋,𝑌 ) ⊗ 1 C(𝑋,𝑌 ) ⊗ C(𝑋,𝑋 ) C(𝑋,𝑌 )

idC(𝑋,𝑌 )⊗idC𝑋 •
)

�
=⇒ idC(𝑋,𝑌 ) ,

𝜆 :

(
C(𝑋,𝑌 ) � 1 ⊗ C(𝑋,𝑌 ) C(𝑌,𝑌 ) ⊗ C(𝑋,𝑌 ) C(𝑋,𝑌 )

id
C
𝑋
⊗idC(𝑋,𝑌 ) •

)
�

=⇒ idC(𝑋,𝑌 ) .

𝜆 is called left unitor and 𝜌 right unitor.

6. For all𝑊,𝑋,𝑌, 𝑍 ∈ Ob(C), an invertible 2-cell 𝛼 (called associator):

(C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 )) ⊗ C(𝑊,𝑋 ) C(𝑋,𝑍 ) ⊗ C(𝑊,𝑋 )

C(𝑊,𝑍 )

C(𝑌, 𝑍 ) ⊗ (C(𝑋,𝑌 ) ⊗ C(𝑊,𝑋 )) C(𝑌, 𝑍 ) ⊗ C(𝑊,𝑌 ) .

•⊗idC(𝑊,𝑋 )

�

•

idC(𝑌,𝑍 )⊗•

•

𝛼

The following two diagrams must commute:



2 Change of Enrichment for Categories enriched over monoidal 2-Categories

10

1. Pentagon identity:

• ◦ (• ⊗ •)

• ◦ (• ⊗ id) ◦ (• ⊗ id ⊗ id) • ◦ (id ⊗ •) ◦ (id ⊗ id ⊗ •)

• ◦ (• ⊗ id) ◦ (id ⊗ • ⊗ id) • ◦ (id ⊗ •) ◦ (id ⊗ • ⊗ id) .

𝛼◦(id⊗id⊗•)𝛼◦(•⊗id⊗id)

•◦(𝛼⊗idid )
𝛼◦(id⊗•⊗id)

•◦(idid⊗𝛼 )

Note that idid refers to the identity 2-cell of an identity 1-cell inV .

2. Triangle identity:

• ◦ (• ⊗ id) ◦ (id ⊗ id
C ⊗ id) • ◦ (id ⊗ •) ◦ (id ⊗ id

C ⊗ id)

•.

𝛼◦(id⊗idC⊗id)

•◦(𝜌⊗idid ) •◦(idid⊗𝜆)

Observe that there are now two kinds of data named associator ; the 2-cell 𝛼 of C and the natural isomor-

phism 𝛼 : (− ⊗ −) ⊗ − ⇒ − ⊗ (− ⊗ −) in V . To differentiate them, we will refer to the latter as the

V-associator. The same applies to the other expressions that could refer to data from either C orV .

Also note that we have omitted the V-associator and V-unitors from the notation; e.g. the 1-cell id ⊗
id
C ⊗ id is really the composition

C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ) � C(𝑌, 𝑍 ) ⊗ 1 ⊗ C(𝑋,𝑌 ) C(𝑌, 𝑍 ) ⊗ C(𝑌,𝑌 ) ⊗ C(𝑋,𝑌 ) .
idC(𝑌,𝑍 )⊗idC𝑌 ⊗idC(𝑋,𝑌 )

Example 2.3.5.

1. Our motivating example occurs for the cartesian monoidal 2-category (Cat ,×, {∗}). By Remark 2.2.5,

the Cat -enriched categories are precisely the ordinary bicategories.

2. Viewing a monoidal category (V, ⊗,1) as a monoidal 2-category with only identity 2-cells, the

associators and unitors of aV-enriched category must be the identity and the pentagon and triangle

identities are trivially satisfied. Consequently, a V-enriched category when V is regarded as a

trivial 2-category is precisely the same as an ordinaryV-enriched category whenV is viewed as a

monoidal category.

Remark 2.3.6. Because all 2-cells occurring in the definition of aV-enriched category are isomorphisms,

the data of aV-enriched category only refers to the underlying (2,1)-category ofV . ⃝

For ordinary monoidal categories, the functors that allow changing the enrichment (Construction 2.1.1)

are the lax monoidal ones. Accordingly, the lax monoidal functor of 2-categories play the same role for

categories enriched over monoidal 2-categories, as we will see in Construction 2.4.1. In order to stress

their importance for this purpose, we will call them changers instead.

Definition 2.3.7. Let (V, ⊗,1) and (W, ⊗,1) be twomonoidal 2-categories. A changer is a lax monoidal

functor of 2-categories; that is, a 2-functor F : V →W together with a 2-natural transformation

V ×V W

F(−)⊗F(−)

F(−⊗−)

𝜖

and a 1-cell 𝑢 : 1→ F (1) inW, such that (F , 𝜖,𝑢) constitutes a lax monoidal functor on the underlying

monoidal categories.
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We will always denote changers by letters like F or G.

Remark 2.3.8. Explicitly, the assumption that 𝜖 : F (− ⊗ −) ⇒ F ⊗ F is a 2-natural transformation (i.e.

a Cat -enriched natural transformation), means that 𝜖 is not only natural in 1-cells 𝑓 : 𝑋 → 𝑌 , 𝑔 : 𝑋 ′ → 𝑌 ′

in the sense that the diagram

F (𝑋 ) ⊗ F (𝑋 ′) F (𝑋 ⊗ 𝑋 ′)

F (𝑌 ) ⊗ F (𝑌 ′) F (𝑌 ⊗ 𝑌 ′)

𝜖

F(𝑓 )⊗F(𝑔) F(𝑓 ⊗𝑔)

𝜖

commutes, but also in 2-cells

𝑋 𝑌

𝑓

𝑓 ′

𝛼 𝑋 ′ 𝑌 ′;

𝑔

𝑔′

𝛽

that is, the following two 2-cells are equal:

F (𝑋 ) ⊗ F (𝑋 ′) F (𝑋 ⊗ 𝑋 ′) F (𝑌 ⊗ 𝑌 ′)𝜖

F(𝑓 ⊗𝑔)

F(𝑓 ′⊗𝑔′ )

F(𝛼⊗𝛽 )

F (𝑋 ) ⊗ F (𝑋 ′) F (𝑌 ) ⊗ F (𝑌 ′) F (𝑌 ⊗ 𝑌 ′) .

F(𝑓 )⊗F(𝑔)

F(𝑓 ′ )⊗F(𝑔′ )

𝜖F(𝛼 )⊗F(𝛽 )

This additional compatibility with the 2-cells distinguishes 2-natural transformations from the ordinary

ones. ⃝

In practice, many functors occurring between cartesian monoidal 2-categories preserve finite products

in the following sense.

Definition 2.3.9. Let 𝐹 : V →W be a 2-functor between two cartesianmonoidal 2-categories (V,×, {∗})
and (W,×, {∗}). We say that 𝐹 preserves finite products, if we have 𝐹 ({∗}) � {∗} and the canonical

2-natural transformation

𝐹 (− × −) ⇒ 𝐹 (−) × 𝐹 (−)

induced by the universal property of the product is an isomorphism.

In words, this means that 𝐹 preserves finite products of 0-cells, 1-cells and 2-cells and this is of course

a stronger statement than just asking for the underlying ordinary functor to preserve finite products.

Recalling that any strong monoidal functor is in particular lax monoidal, it follows that 2-functors pre-

serving finite products are changers in a canonical way.

Definition 2.3.10. Let 𝐹 : V →W be a 2-functor between two cartesianmonoidal 2-categories (V,×, {∗})
and (W,×, {∗}) which preserves finite products. Then F = 𝐹 obtains the structure of a changer (F , 𝜖,𝑢)
with 𝜖 given by the inverse of the canonical 2-natural transformation

F (− × −) ⇒ F (−) × F (−)

and𝑢 the inverse of the uniquemorphism F ({∗}) → {∗}. We call a changer induced in this way cartesian.
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The famous coherence theorem for monoidal categories byMac Lane (see [Mac63]) states that any “formal”

diagram in a monoidal category consisting of associators and unitors commutes. The analogous statement

for lax symmetric monoidal functors has been proven by Epstein (see [Eps66]) in direct reaction to Mac

Lane’s result.

Theorem 2.3.11 (Coherence of lax monoidal functors). Let (V, ⊗,1) and (W, ⊗,1) be two monoidal

categories with a lax monoidal functor

𝐹 : V →W, 𝜖 : 𝐹 (−) ⊗ 𝐹 (−) ⇒ 𝐹 (− ⊗ −), 𝑢 : 1→ 𝐹 (1).

Then for every 𝑛 ∈ N, all formal compositions of 𝜖 , identities and ⊗ of the form

𝑛⊗
𝑖=1

𝐹 (−) ⇒ 𝐹

(
𝑛⊗
𝑖=1

−
)

are equal. We denote this composition by 𝜖 (𝑛) (in particular 𝜖 (1) = id and 𝜖 (2) = 𝜖).

The following remark shows that if we are only interested in cartesian monoidal 2-categories and carte-

sian changers between them, then the coherence of the underlying strong monoidal functors is more

apparent.

Remark 2.3.12. Suppose that (V,×, {∗}) and (W,×, {∗}) are two cartesian monoidal categories. If

𝐹 : V → W preserves finite products and 𝜖 is given by the inverse of the canonical natural transfor-

mation 𝜐 : 𝐹 (− × −) ⇒ 𝐹 (−) × 𝐹 (−), then the coherence result is easy to prove.

Indeed, in this case it is equivalent to showing that there is only one formal composition

𝜐 (𝑛) : 𝐹

(
𝑛∏
𝑖=1

E𝑖

)
⇒

𝑛∏
𝑖=1

𝐹 (E𝑖)

of 𝜐, identities and products thereof. To establish the latter, it is in turn sufficient to show the identity

𝜋𝑖 ◦ 𝜐 (𝑛) = 𝐹 (𝜋𝑖) for all 𝑖 ∈ {1, . . . , 𝑛}.
For 𝑛 = 1, we have 𝜐 (1) = id, so we may assume that 𝑛 > 1. Then we can write 𝜐 (𝑛) as the composition

𝐹
(∏𝑛

𝑖=1 −
)

𝐹

(∏𝑘
𝑖=1 −

)
× 𝐹

(∏𝑛
𝑖=𝑘+1 −

) ∏𝑘
𝑖=1 𝐹 (−) ×

∏𝑛
𝑖=𝑘+1 𝐹 (−)

𝜐 𝜐 (𝑘 )×𝜐 (𝑛−𝑘 )

for some natural number 𝑘 ∈ {1, . . . , 𝑛 − 1}. For 𝑗 ∈ {1, . . . , 𝑘} (the case 𝑗 ∈ {𝑘 + 1, . . . , 𝑛} follows analo-
gously), we then obtain the commutative diagram

𝐹
(∏𝑛

𝑖=1 −
)

𝐹

(∏𝑘
𝑖=1 −

)
× 𝐹

(∏𝑛
𝑖=𝑘+1 −

) ∏𝑘
𝑖=1 𝐹 (−) ×

∏𝑛
𝑖=𝑘+1 𝐹 (−)

𝐹

(∏𝑘
𝑖=1 −

) ∏𝑘
𝑖=1 𝐹 (−)

𝐹 (−),

𝜐

𝐹 (𝜋1 )

𝜐 (𝑘 )×𝜐 (𝑛−𝑘 )

𝜋1 𝜋1

𝜐 (𝑘 )

𝐹 (𝜋 𝑗 )
𝜋 𝑗

where the lower triangle commutes by induction. ⃝

2.4 Change of Enrichment for Categories enriched over monoidal
2-categories

We are finally ready to formulate and prove our change of enrichment result for categories enriched over

monoidal 2-categories, generalizing Construction 2.1.1.
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Construction 2.4.1 (Change of Enrichment overmonoidal 2-Categories). Let (V, ⊗,1) and (W, ⊗,1)
be two monoidal 2-categories and (F : V →W, 𝜖,𝑢) be a changer (in the sense of Definition 2.3.7). From

any V-enriched category (C, •, 𝜆, 𝜌, 𝛼) we may construct aW-enriched category CF = ChEn(C, F ) as
follows:

1. The objects of CF are those of C; i.e. Ob(CF) = Ob(C).

2. For 𝑋,𝑌 ∈ Ob(C), we have CF (𝑋,𝑌 ) := F (C(𝑋,𝑌 )) ∈ W.

3. The identity 1-cell id
CF
𝑋

of 𝑋 ∈ Ob(C) is

1 F (1) F (C(𝑋,𝑋 )) .𝑢 F(idC
𝑋
)

4. The horizontal composition in CF is the 1-cell

•̂ : F (C(𝑌, 𝑍 )) ⊗ F (C(𝑋,𝑌 )) F (C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 )) F (C(𝑋,𝑍 )) .𝜖 F(•)

5. The left and right unitors of CF are induced by those of C:

ˆ𝜆 := F (𝜆), 𝜌 := F (𝜌).

6. With the natural transformation 𝜖 (3) : F (−) ⊗F (−) ⊗F (−) ⇒ F (− ⊗ − ⊗ −) from Theorem 2.3.11,

the associator 𝛼 in CF is (writing [𝑋,𝑌 ] := C(𝑋,𝑌 ) for brevity)

F ([𝑌, 𝑍 ]) ⊗ F ([𝑋,𝑌 ]) ⊗ F ([𝑊,𝑋 ]) F ([𝑌, 𝑍 ] ⊗ [𝑋,𝑌 ] ⊗ [𝑊,𝑋 ]) F ([𝑊,𝑍 ]).𝜖 (3)

F( (−•−)•−)

F(−•(−•−) )

F(𝛼 )

Example 2.4.2. Our central motivation is the case of the cartesian monoidal category

(V, ⊗,1) = (W, ⊗,1) = (Cat ,×, {∗}) .

In this setting, changing the enrichment (in the sense of Construction 2.4.1) allows us to construct a bicat-

egory CF from a given bicategory C and a changer F : Cat → Cat .
We can also replaceV = Cat by a monoidal 2-subcategory B ⊂ Cat . This is necessary if the changer F can

only be defined on a proper subcategory of C, as is for instance the case for Span
1
of Definition 4.1.4. How-

ever, in this case we have to ensure that the “input category” C can be regarded as a B-enriched category;
i.e. “all the data” of C must lie in B. Explicitly, this means that C must satisfy (for all 𝑋,𝑌 ∈ Ob(C))

C(𝑋,𝑌 ) ∈ B, id
C
𝑋
∈ B, • ∈ B, 𝜆 ∈ B, 𝜌 ∈ B, 𝛼 ∈ B .

In either case, the procedure can roughly be summarized by saying that we apply F to all hom-categories.

Observe that the identity 1-cell id
CF
𝑋

of 𝑋 ∈ Ob(C) corresponds to the unique object in the image of the

functor

{∗} F ({∗}) F (C(𝑋,𝑋 )).𝑢 F(const(id𝑋 ) )

Example 2.4.3. Viewing a monoidal category (D, ⊗,1) as a bicategory with a single object via delooping

(see Example 2.2.2), Example 2.4.2 shows that change of enrichment can be used to produce new monoidal

categories from old ones. For example, the changer

Cat (C,−) : Cat → Cat , D ↦→ [C,D]
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fromExample 3.3.1 reveals that for any category C, the functor category [C,D] is also amonoidal category.

By Construction 2.4.1, the monoidal product on [C,D] is defined pointwise

[C,D] × [C,D] [C,D × D] [C,D]� ⊗◦−

and the unit object is the constant functor const(1) : C → D.

From this description and the pointwise nature of limits in functor categories, it follows that the induced

monoidal structure on [C,D] is cartesian if (D, ⊗,1) is cartesian monoidal.

We highlight some further examples of this construction in Section 3.2, Section 3.3 and Section 4.3.

Our next goal is to prove that Construction 2.4.1 yields a well-definedW-enriched category CF . In

order to achieve this, we require a couple of lemmas.

We begin with the following lemma, which may be thought of as extending the naturality of 𝜖 . Indeed,

if 𝑛 = 2 and 𝑙1 = 𝑙2 = 1, then it reduces to the statement that 𝜖 is natural.

Lemma 2.4.4. Let (V, ⊗,1) and (W, ⊗,1) be two monoidal categories and (𝐹 : V → W, 𝜖,𝑢) be a

lax monoidal functor. Furthermore, let 𝑓𝑖 :
⊗𝑙𝑖

𝑗=1𝐴𝑖, 𝑗 → 𝐵𝑖 be morphisms in V for 𝑖 ∈ {1, . . . , 𝑛} and
𝑛, 𝑙𝑖 ∈ N>0. Then we have

𝜖 (𝑛) ◦
𝑛⊗
𝑖=1

(
𝐹 (𝑓𝑖) ◦ 𝜖 (𝑙𝑖 )

)
= 𝐹

(
𝑛⊗
𝑖=1

𝑓𝑖

)
◦ 𝜖 (

∑𝑛
𝑗=1 𝑙 𝑗 ) .

Proof. Because 𝜖 (1) is the identity, the statement is clear for 𝑛 = 1. The case 𝑛 > 1 follows by Theo-

rem 2.3.11, the naturality of 𝜖 and induction:

𝐹

(
𝑛⊗
𝑖=1

𝑓𝑖

)
◦ 𝜖 (

∑𝑛
𝑗=1 𝑙 𝑗 ) = 𝐹

(
𝑓1 ⊗

𝑛⊗
𝑖=2

𝑓𝑖

)
◦ 𝜖 ◦

(
𝜖 (𝑙1 ) ⊗ 𝜖 (

∑𝑛
𝑗=2 𝑙 𝑗 )

)
= 𝜖 ◦

(
𝐹 (𝑓1) ⊗ 𝐹

(
𝑛⊗
𝑖=2

𝑓𝑖

))
◦

(
𝜖 (𝑙1 ) ⊗ 𝜖 (

∑𝑛
𝑗=2 𝑙 𝑗 )

)
= 𝜖 ◦

((
𝐹 (𝑓1) ◦ 𝜖 (𝑙1 )

)
⊗

(
𝜖 (𝑛−1) ◦

𝑛⊗
𝑖=2

(
𝐹 (𝑓𝑖) ◦ 𝜖 (𝑙𝑖 )

)))
= 𝜖 ◦ (id ⊗ 𝜖 (𝑛−1) ) ◦

𝑛⊗
𝑖=1

(
𝐹 (𝑓𝑖) ◦ 𝜖 (𝑙𝑖 )

)
.

We also require this extended form of naturality for the 2-cells in a monoidal 2-category, which follows

with exactly the same proof as the previous lemma. Note that this uses our assumption that 𝛼 is 2-natural,

so that a 2-cell like (𝛼 ⊗ 𝛽) ⊗ 𝛾 can be identified with 𝛼 ⊗ (𝛽 ⊗ 𝛾).

Lemma2.4.5. LetF : V →W be a changer between twomonoidal 2-categories (V, ⊗,1) and (W, ⊗,1).
Then 2-cells

⊗𝑙𝑖
𝑖=1𝐴𝑖, 𝑗 𝐵𝑖

𝑓𝑖

𝑔𝑖

𝛾𝑖

for 𝑖 ∈ {1, . . . , 𝑛}, 𝑙𝑖 ∈ N>0 satisfy

𝜖 (𝑛) ◦
𝑛⊗
𝑖=1

(
F (𝛾𝑖) ◦ 𝜖 (𝑙𝑖 )

)
= F

(
𝑛⊗
𝑖=1

𝛾𝑖

)
◦ 𝜖 (

∑𝑛
𝑗=1 𝑙 𝑗 ) .

The final lemma describes the compatibility of a lax monoidal functor with the unitors. Note that the

isomorphisms 𝐼 and 𝐽 from the lemma are usually suppressed from the notation, except in the statement

and proof of the lemma.
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Lemma 2.4.6. Let (V, ⊗,1) and (W, ⊗,1) be two monoidal categories and 𝑛 ∈ N, 𝑛 ≥ 2. For any lax

monoidal functor (𝐹 : V → W, 𝜖,𝑢) and morphisms 𝑓𝑖 : 𝐴𝑖 → 𝐵𝑖 in V (𝑖 ∈ {1, . . . , 𝑛}) such that 𝐴 𝑗 = 1

for some 𝑗 ∈ {1, . . . , 𝑛}, we have

𝐹

(
𝑛⊗
𝑖=1

𝑓𝑖

)
◦ 𝐹 (𝐼 ) ◦ 𝜖 (𝑛−1) = 𝜖 (𝑛) ◦

(
𝑗−1⊗
𝑖=1

𝐹 (𝑓𝑖) ⊗
(
𝐹 (𝑓𝑗 ) ◦ 𝑢

)
⊗

𝑛⊗
𝑖=𝑗+1

𝐹 (𝑓𝑖)
)
◦ 𝐽 ,

where 𝐼 :
⊗

𝑖∈{1,...,𝑛}\{ 𝑗 } 𝐴𝑖 →
⊗𝑛

𝑖=1𝐴𝑖 is the unique composition of ⊗, V-unitors and identities and

similarly for 𝐽 :
⊗

𝑖∈{1,...,𝑛}\{ 𝑗 } 𝐹 (𝐴𝑖) →
⊗𝑗−1

𝑖=1 𝐹 (𝐴𝑖) ⊗ 1 ⊗
⊗𝑛

𝑖=𝑗+1 𝐹 (𝐴𝑖).
For the case 𝑛 = 2, this means that any two morphisms 𝑓 : 𝐴→ 𝐴′ and 𝑔 : 1→ 𝐵 inV satisfy

𝐹 (𝑓 ⊗ 𝑔) ◦ 𝐹 (𝐼 ) = 𝜖 ◦ (𝐹 (𝑓 ) ⊗ (𝐹 (𝑔) ◦ 𝑢)) ◦ 𝐽 , 𝐹 (𝑔 ⊗ 𝑓 ) ◦ 𝐹 (𝐼 ) = 𝜖 ◦ ((𝐹 (𝑔) ◦ 𝑢) ⊗ 𝐹 (𝑓 )) ◦ 𝐽 .

Proof. By Lemma 2.4.4, the right square in the diagram⊗
𝑖∈{1,...,𝑛}\{ 𝑗 } 𝐹 (𝐴𝑖) 𝐹

(⊗
𝑖∈{1,...,𝑛}\{ 𝑗 } 𝐴𝑖

)
𝐹
(⊗𝑛

𝑖=1𝐴𝑖
)

𝐹
(⊗𝑛

𝑖=1 𝐵𝑖
)

⊗𝑗−1
𝑖=1 𝐹 (𝐴𝑖) ⊗ 1 ⊗

⊗𝑛

𝑖=𝑗+1 𝐹 (𝐴𝑖)
⊗𝑛

𝑖=1 𝐹 (𝐴𝑖)
⊗𝑛

𝑖=1 𝐹 (𝐵𝑖)

𝜖 (𝑛−1)

𝐽

𝐹 (𝐼 ) 𝐹 (⊗𝑛
𝑖=1 𝑓𝑖)

id⊗𝑢⊗id

𝜖 (𝑛) ⊗𝑛
𝑖=1 𝐹 (𝑓𝑖 )

𝜖 (𝑛)

commutes, so it remains to verify that the rest also commutes.

Assuming 𝑗 > 1, we may write 𝐼 = id ⊗ 𝜌−1 ⊗ id with 𝜌 : 𝐴 𝑗−1 ⊗ 1 → 𝐴 𝑗−1 denoting the right V-unitor.

Therefore, utilizing the lemma again yields

𝐹 (𝐼 ) ◦ 𝜖 (𝑛−1) = 𝐹
(
id ⊗ 𝜌−1 ⊗ id

)
◦ 𝜖 (𝑛−1) = 𝜖 (𝑛−1) ◦

(
id ⊗ 𝐹 (𝜌−1) ⊗ id

)
.

Similarly, with 𝜌 : 𝐹 (𝐴 𝑗−1) ⊗ 1 → 𝐹 (𝐴 𝑗−1) denoting the rightW-unitor, we have 𝐽 = id ⊗ 𝜌−1 ⊗ id and

thus by the unitality of 𝐹

𝜖 (𝑛) ◦ (id ⊗ 𝑢 ⊗ id) ◦ 𝐽 = 𝜖 (𝑛−1) ◦ (id ⊗ 𝜖 ⊗ id) ◦ (id ⊗ 𝑢 ⊗ id) ◦
(
id ⊗ 𝜌−1 ⊗ id

)
= 𝜖 (𝑛−1) ◦

(
id ⊗

(
𝜖 ◦ (id ⊗ 𝑢) ◦ 𝜌−1

)
⊗ id

)
= 𝜖 (𝑛−1) ◦

(
id ⊗ 𝐹 (𝜌−1) ⊗ id

)
.

This shows the desired equality if 𝑗 > 1. The case 𝑗 = 1 follows similarly, using the left unitors instead.

We can now proceed to prove that our construction indeed produces a validW-enriched category.

Theorem 2.4.7. Given a changer (F : V → W, 𝜖,𝑢) between two monoidal 2-categories (V, ⊗,1) and
(W, ⊗,1) and a V-enriched category C, Construction 2.4.1 yields a well-definedW-enriched category

CF .

Proof. First we observe that the domain (for the codomain this is immediate) of the right unitor

𝜌 = F (𝜌) : F (− • idC
𝑋
) �=⇒ F (id)

is correct by Lemma 2.4.6:

F (− • idC) = F
(
• ◦

(
id ⊗ id

C
))

= F (•) ◦ F
(
id ⊗ id

C
)

= F (•) ◦ 𝜖 ◦ F (id) ⊗
(
F (idC) ◦ 𝑢

)
= •̂ ◦ (id ⊗ id

CF ) = −•̂idCF .

An analogous argument shows the same for the left unitor
ˆ𝜆. The domain of the associator 𝛼 is also correct,

which we verify with the calculation (utilizing Lemma 2.4.4)

F ((− • −) • −) ◦ 𝜖 (3) = F (• ◦ (• ⊗ id)) ◦ 𝜖 (3) = F (•) ◦ F (• ⊗ id) ◦ 𝜖 (3)

= F (•) ◦ 𝜖 ◦ (F (•) ◦ 𝜖) ⊗ id = (−•̂−)•̂−
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and the same applies to the codomain.

It remains to show that the pentagon and triangle identities are satisfied. To see this, we start with the

triangle identity in C

• ◦ (• ⊗ id) ◦ (id ⊗ id
C ⊗ id) • ◦ (id ⊗ •) ◦ (id ⊗ id

C ⊗ id)

•.

𝛼◦(id⊗idC⊗id)

•◦(𝜌⊗idid ) •◦(idid⊗𝜆)

Applying F to this diagram and precomposing by 𝜖 yields the following 2-cells inW:

F
(
𝛼 ◦ (id ⊗ id

C ⊗ id)
)
◦ 𝜖 = F (𝛼) ◦ F

(
id ⊗ id

C ⊗ id

)
◦ 𝜖 = F (𝛼) ◦ 𝜖 (3) ◦

(
id ⊗

(
F (idC) ◦ 𝑢

)
⊗ id

)
= 𝛼 ◦ (id ⊗ id

CF ⊗ id),
F (• ◦ (𝜌 ⊗ idid)) ◦ 𝜖 = F (•) ◦ 𝜖 ◦ (F (𝜌) ⊗ idid) = •̂ ◦ (𝜌 ⊗ idid),

F (• ◦ (idid ⊗ 𝜆)) ◦ 𝜖 = F (•) ◦ 𝜖 ◦ (idid ⊗ F (𝜆)) = •̂ ◦
(
idid ⊗ ˆ𝜆

)
.

Here we used Lemma 2.4.6 for the first equation and the 2-naturality of 𝜖 (see Remark 2.3.8) for the other

two. The calculation shows that the corresponding diagram constitutes the desired triangle identity for

CF .
Similarly, the pentagon identity of CF follows from the one in C by applying F and precomposing with

𝜖 (4) , because by Lemma 2.4.4 and Lemma 2.4.5:

F (𝛼 ◦ (id ⊗ id ⊗ •)) ◦ 𝜖 (4) = F (𝛼) ◦ 𝜖 (3) ◦ (id ⊗ id ⊗ (F (•) ◦ 𝜖)) = 𝛼 ◦ (id ⊗ id ⊗ •̂),

F (• ◦ (𝛼 ⊗ idid)) ◦ 𝜖 (4) = F (•) ◦ 𝜖 ◦
((
F (𝛼) ◦ 𝜖 (3)

)
⊗ idid

)
= •̂ ◦ (𝛼 ⊗ idid).

The remaining equations follow analogously.

Remark 2.4.8. Viewingmonoidal categories asmonoidal 2-categories with only identity 2-cells, a changer

between two such monoidal categories is just a lax monoidal functor. Change of enrichment using Con-

struction 2.4.1 produces the same monoidal category as Construction 2.1.1.

In this sense, the former construction generalizes the latter. ⃝

2.5 Functoriality of Change of Enrichment

Recalling the functoriality result for categories enriched over ordinarymonoidal categories (Theorem 2.1.4),

it seems quite natural that a similar statement should apply when changing the enrichment of categories

enriched over monoidal 2-categories. Indeed, Theorem 2.6.2 will exhibit ChEn as the action on hom-

categories of a strict functor

2Cat lax
⊗ → Cat , V ↦→ V-Cat .

As a first step, we want to realize the functoriality of ChEn(C, F ) in the “input category” C. In order to

make this precise, we require a notion of morphisms between V-enriched categories, corresponding (in

case they are enriched over (Cat ,×, {∗})) to the different kinds of functors between bicategories.

Definition 2.5.1. Let (V, ⊗,1) be a monoidal 2-category and C and D be twoV-enriched categories. A

laxV-enriched functor 𝐹 : C → D consists of the following data:

1. A function 𝐹 : Ob(C) → Ob(D) mapping objects to objects.

2. For each pair of objects 𝑋,𝑌 ∈ Ob(C), a 1-cell inV

𝐹 = 𝐹 (𝑋,𝑌 ) : C(𝑋,𝑌 ) → D(𝐹 (𝑋 ), 𝐹 (𝑌 )) .
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3. For every object 𝑋 ∈ Ob(C), a 2-cell

1 D(𝐹 (𝑋 ), 𝐹 (𝑋 ))

C(𝑋,𝑋 ),

id
D
𝐹 (𝑋 )

id
C
𝑋 𝐹 (𝑋,𝑋 )

𝐹id

called unity constraint.

4. For all objects 𝑋,𝑌, 𝑍 ∈ Ob(C), a 2-cell

C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ) D(𝐹 (𝑌 ), 𝐹 (𝑍 )) ⊗ D(𝐹 (𝑋 ), 𝐹 (𝑌 ))

C(𝑋,𝑍 ) D(𝐹 (𝑋 ), 𝐹 (𝑍 )),

•

𝐹

•

𝐹⊗𝐹

𝐹•

called functoriality constraint.

This data is subject to the following commutative diagrams inV:

1. Associativity:

• ◦ (• ⊗ id) ◦ (𝐹 ⊗ 𝐹 ⊗ 𝐹 ) • ◦ (id ⊗ •) ◦ (𝐹 ⊗ 𝐹 ⊗ 𝐹 )

• ◦ ((𝐹 ◦ •) ⊗ 𝐹 ) • ◦ (𝐹 ⊗ (𝐹 ◦ •))

𝐹 ◦ • ◦ (• ⊗ id) 𝐹 ◦ • ◦ (id ⊗ •) .

𝛼◦(𝐹⊗𝐹⊗𝐹 )

•◦(𝐹•⊗id𝐹 ) •◦(id𝐹 ⊗𝐹• )

𝐹•◦(•⊗id) 𝐹•◦(id⊗•)
𝐹◦𝛼

2. Unity:

• ◦ (idD ⊗ 𝐹 ) 𝐹

• ◦ ((𝐹 ◦ idC) ⊗ 𝐹 ) 𝐹 ◦ • ◦ (idC ⊗ id)

𝜆◦𝐹

•◦(𝐹id⊗id𝐹 )

𝐹•◦(idC⊗id)

𝐹◦𝜆

• ◦ (𝐹 ⊗ id
D) 𝐹

• ◦ (𝐹 ⊗ (𝐹 ◦ idC)) 𝐹 ◦ • ◦ (id ⊗ id
C) .

𝜌◦𝐹

•◦(id𝐹 ⊗𝐹id )

𝐹•◦(id⊗idC )

𝐹◦𝜌

Here we have as usual suppressed theV-unitors andV-associators from the notation; e.g. •◦(idD⊗
𝐹 ) is actually the 1-cell

C(𝑋,𝑌 ) � 1 ⊗ C(𝑋,𝑌 ) D(𝐹 (𝑌 ), 𝐹 (𝑌 )) ⊗ D(𝐹 (𝑋 ), 𝐹 (𝑌 )) D(𝐹 (𝑋 ), 𝐹 (𝑌 )) .
id
D
𝐹 (𝑌 )⊗𝐹 (𝑋,𝑌 ) •

Note that by naturality of the leftV-unitor, the first part of this composition may also be written as

C(𝑋,𝑌 ) D(𝐹 (𝑋 ), 𝐹 (𝑌 )) � 1 ⊗ D(𝐹 (𝑋 ), 𝐹 (𝑌 )) D(𝐹 (𝑌 ), 𝐹 (𝑌 )) ⊗ D(𝐹 (𝑋 ), 𝐹 (𝑌 )).𝐹
id
D
𝐹 (𝑌 )⊗id

If the unity and functoriality constraint are isomorphisms, then we call 𝐹 a V-enriched functor and if

they are the identity, we refer to 𝐹 as a strictV-enriched functor.
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Example 2.5.2.

1. Of course, a (Cat ,×, {∗})-enriched (lax) functor is precisely a (lax) functor between bicategories

because of Remark 2.2.7.

2. Viewing monoidal categories as monoidal 2-categories with only identity 2-cells, a (lax) enriched

functor is just an enriched functor.

LaxV-enriched functors can be composed “in the obvious way”.

Lemma 2.5.3. Let (V, ⊗,1) be a monoidal 2-category and 𝐹 : C → D,𝐺 : D → E be two laxV-enriched

functors betweenV-enriched categories.

The composition 𝐺 ◦ 𝐹 : C → E of 𝐹 and 𝐺 is the following laxV-enriched functor:

1. Its action on objects is the composition 𝐺 ◦ 𝐹 : Ob(C) → Ob(E).

2. For 𝑋,𝑌 ∈ Ob(C), the corresponding 1-cell inV is the composition

C(𝑋,𝑌 ) D(𝐹 (𝑋 ), 𝐹 (𝑌 )) E(𝐺 (𝐹 (𝑋 )),𝐺 (𝐹 (𝑌 ))).𝐹 (𝑋,𝑌 ) 𝐺 (𝐹 (𝑋 ),𝐹 (𝑌 ) )

3. For 𝑋 ∈ Ob(C), the unity constraint is given by the pasting diagram

1 E(𝐺 (𝐹 (𝑋 )),𝐺 (𝐹 (𝑋 )))

C(𝑋,𝑋 ) D(𝐹 (𝑋 ), 𝐹 (𝑋 )).

id
E

id
C id

D

𝐹

𝐺
𝐹id

𝐺id

(2.1)

4. For 𝑋,𝑌, 𝑍 ∈ Ob(C), the functoriality constraint is the 2-cell

C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ) D(𝑌 ′, 𝑍 ′) ⊗ D(𝑋 ′, 𝑌 ′) E(𝐺 (𝑌 ′),𝐺 (𝑍 ′)) ⊗ E(𝐺 (𝑋 ′),𝐺 (𝑌 ′))

C(𝑋,𝑍 ) D(𝑋 ′, 𝑍 ′) E(𝐺 (𝑋 ′),𝐺 (𝑌 ′)),

𝐹⊗𝐹

•

𝐺⊗𝐺

𝐹• • 𝐺• •

𝐹 𝐺

where we abbreviated the image 𝐹 (𝑊 ) of an object𝑊 ∈ Ob(C) by𝑊 ′.
Proof. One has to check that𝐺 ◦𝐹 is associative and unital in the sense that the three diagrams of 2-cells in

Definition 2.5.1 commute. We demonstrate this for one of the unity diagrams (with the commutativity of

the other two diagrams following via a similar diagram chase), namely the outer rectangle in the diagram

• ◦ (idE ⊗ (𝐺 ◦ 𝐹 )) 𝐺 ◦ 𝐹

• ◦ (𝐺 ◦ idD) ⊗ (𝐺 ◦ 𝐹 ) 𝐺 ◦ • ◦ (idD ⊗ 𝐹 )

• ◦ (𝐺 ◦ 𝐹 ◦ idC) ⊗ (𝐺 ◦ 𝐹 ) 𝐺 ◦ • ◦ (𝐹 ◦ idC) ⊗ 𝐹 𝐺 ◦ 𝐹 ◦ • ◦ (idC ⊗ id) .

𝜆◦𝐺◦𝐹

•◦𝐺id⊗id𝐺◦𝐹
𝐺•◦idD⊗𝐹

•◦(𝐺◦𝐹id )⊗id𝐺◦𝐹

𝐺◦𝜆◦𝐹

𝐺◦•◦(𝐹id⊗id𝐹 )

𝐺•◦(𝐹◦idC )⊗𝐹 𝐺◦𝐹•◦(idC⊗id)

𝐺◦𝐹◦𝜆

The top part is the unity diagram of 𝐺 precomposed by 𝐹 and the right part is the unity diagram of 𝐹

postcomposed by 𝐺 , so they both commute. Finally, the bottom left rectangle describes the two possible

ways to horizontally compose the 2-cells (writing 𝑋 ′ := 𝐹 (𝑋 ), 𝑌 ′ := 𝐹 (𝑌 ))

C(𝑋,𝑌 ) D(𝑌 ′, 𝑌 ′) ⊗ D(𝑋 ′, 𝑌 ′) E(𝐺 (𝑋 ′),𝐺 (𝑌 ′))

id
D⊗𝐹

(𝐹◦idC )⊗𝐹

•◦𝐺⊗𝐺

𝐺◦•

𝐹id⊗id𝐹 𝐺•
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inV , which are equal since composition is functorial.

Of course, the point is that this allows us to define a category ofV-enriched categories.

Definition 2.5.4. For a fixed monoidal 2-category (V, ⊗,1), the category V-Cat consists of the V-

enriched categories as objects and the laxV-enriched functors as morphisms. The composition is defined

as in Lemma 2.5.3.

Example 2.5.5. Combining Example 2.3.5 and Example 2.5.2, we see that Cat -Cat = Bicat is the category of
(small) bicategories and that (V, ⊗,1)-Cat is the category of (small)V-enriched categories, when viewing

a monoidal category (V, ⊗,1) as a 2-monoidal one with only identity 2-cells.

We can now show that changing the enrichment is indeed functorial.

Theorem 2.5.6 (Functoriality of Change of Enrichment I). Let (F : V → W, 𝜖,𝑢) be a changer

between two monoidal 2-categories (V, ⊗,1) and (W, ⊗,1). Construction 2.4.1 extends to a functor

ChEn(−, F ) : V-Cat →W-Cat , C ↦→ CF, 𝐺 ↦→ 𝐺F,

where the laxW-enriched functor 𝐺F : CF → DF induced by 𝐺 : C → D is given as follows:

1. Its action on objects Ob(CF) = Ob(C) → Ob(D) = Ob(DF) is 𝐺 .

2. For a pair of objects 𝑋,𝑌 ∈ Ob(C), its action is given by

F (𝐺 (𝑋,𝑌 )) : CF (𝑋,𝑌 ) = F (C(𝑋,𝑌 )) → F (D(𝐺 (𝑋 ),𝐺 (𝑌 ))) = DF (𝐺 (𝑋 ),𝐺 (𝑌 )).

3. The unity constraint (𝐺F)id : idDF ⇒ 𝐺F ◦ idCF is the 2-cell

1 F (1) F (D(𝐺 (𝑋 ),𝐺 (𝑋 )))

F (C(𝑋,𝑋 )) .

𝑢
F

(
id
D
𝐺 (𝑋 )

)

F(idC𝑋 ) F(𝐺 (𝑋,𝑋 ) )
F(𝐺id )

4. The functoriality constraint (𝐺F)• : •̂ ◦ (𝐺F ⊗ 𝐺F) ⇒ 𝐺F ◦ •̂ is

CF (𝑌, 𝑍 ) ⊗ CF (𝑋,𝑌 ) DF (𝐺 (𝑌 ),𝐺 (𝑍 )) ⊗ DF (𝐺 (𝑋 ),𝐺 (𝑌 ))

CF (𝑋,𝑍 ) DF (𝐺 (𝑋 ),𝐺 (𝑍 )).

F(𝐺 )⊗F(𝐺 )

•̂ F (𝐺• )◦𝜖 •̂

F (𝐺 )

Proof. First observe that the functoriality constraint is well-defined, because expanding the definition of •̂
yields the diagram

CF (𝑌, 𝑍 ) ⊗ CF (𝑋,𝑌 ) DF (𝐺 (𝑌 ),𝐺 (𝑍 )) ⊗ DF (𝐺 (𝑋 ),𝐺 (𝑌 ))

F (C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 )) F (D(𝐺 (𝑌 ),𝐺 (𝑍 )) ⊗ D(𝐺 (𝑋 ),𝐺 (𝑌 )))

CF (𝑋,𝑍 ) DF (𝐺 (𝑋 ),𝐺 (𝑍 )),

F(𝐺 )⊗F(𝐺 )

𝜖 𝜖

F(𝐺⊗𝐺 )

F(•) F(𝐺• ) F(•)

F(𝐺 )
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whose upper square commutes by naturality of 𝜖 .

To see that 𝐺F is a laxW-enriched functor, we have to verify the associativity and unity axioms.

Because 𝐺 : C → D is a laxV-enriched functor, the diagram

• ◦ (idD ⊗ 𝐺) 𝐺

• ◦ ((𝐺 ◦ idC) ⊗ 𝐺) 𝐺 ◦ • ◦ (idC ⊗ id)

𝜆◦𝐺

•◦(𝐺id⊗id𝐺 )

𝐺•◦(idC⊗id)

𝐺◦𝜆

expressing its unity is commutative. By Lemma 2.4.6 and the definitions in Construction 2.4.1, we have

F (• ◦ (𝐺id ⊗ id𝐺 )) = F (•) ◦ 𝜖 ◦ ((F (𝐺id) ◦ 𝑢) ⊗ F (id𝐺 )) = •̂ ◦ (𝐺F)id ⊗ id𝐺F ,

F
(
𝐺• ◦ (idC ⊗ id)

)
= F (𝐺•) ◦ 𝜖 ◦

(
(F (idC) ◦ 𝑢) ⊗ F (id)

)
= (𝐺F)• ◦ idCF ⊗ id,

F (𝜆 ◦𝐺) = F (𝜆) ◦ F (𝐺) = ˆ𝜆 ◦𝐺F,
F (𝐺 ◦ 𝜆) = F (𝐺) ◦ F (𝜆) = 𝐺F ◦ ˆ𝜆,

so applying F to the diagram yields the corresponding unity diagram for 𝐺F . The commutativity of the

other unity diagram of 𝐺F follows analogously.

Likewise, in order to establish the associativity diagram of 𝐺F , we start with the corresponding diagram

of 𝐺

• ◦ (• ⊗ id) ◦ (𝐺 ⊗ 𝐺 ⊗ 𝐺) • ◦ (id ⊗ •) ◦ (𝐺 ⊗ 𝐺 ⊗ 𝐺)

• ◦ ((𝐺 ◦ •) ⊗ 𝐺) • ◦ (𝐺 ⊗ (𝐺 ◦ •))

𝐺 ◦ • ◦ (• ⊗ id) 𝐺 ◦ • ◦ (id ⊗ •) .

𝛼◦(𝐺⊗𝐺⊗𝐺 )

•◦(𝐺•⊗id𝐺 ) •◦(id𝐺⊗𝐺• )

𝐺•◦(•⊗id) 𝐺•◦(id⊗•)
𝐺◦𝛼

Applying F to this diagram and precomposing with 𝜖 (3) yields the desired associativity diagram for 𝐺F ,
which we demonstrate with the calculations (using Lemma 2.4.4 and Lemma 2.4.5)

F (𝛼 ◦ (𝐺 ⊗ 𝐺 ⊗ 𝐺)) ◦ 𝜖 (3) = F (𝛼) ◦ 𝜖 (3) ◦ (F (𝐺) ⊗ F (𝐺) ⊗ F (𝐺)) = 𝛼 ◦ (𝐺F ⊗ 𝐺F ⊗ 𝐺F),
F (• ◦ (𝐺• ⊗ id𝐺 )) ◦ 𝜖 (3) = F (•) ◦ 𝜖 ◦ ((F (𝐺•) ◦ 𝜖) ⊗ F (id𝐺 )) = •̂ ◦ ((𝐺F)• ⊗ id𝐺F ),
F (• ◦ (id𝐺 ⊗ 𝐺•)) ◦ 𝜖 (3) = F (•) ◦ 𝜖 ◦ (F (id𝐺 ) ⊗ (F (𝐺•) ◦ 𝜖)) = •̂ ◦ (id𝐺F ⊗ (𝐺F)•),

noting that the other three equations follow analogously.

It remains to check that ChEn(−, F ) : V-Cat → W-Cat is a functor. It is straightforward to verify that

identities are preserved; that is, we have ChEn(idC, F ) = idCF . To see that composition is also preserved,

let 𝐹 : C → D and 𝐺 : D → E be two laxV-enriched functors. Clearly, the action on objects and 1-cells

respects composition, so it is left to check the same for the unity and functoriality constraint.

Regarding the functoriality constraint, observe that because composition is functorial and 𝜖 is a natu-

ral transformation, first horizontally composing F (𝐹•) with F (𝐺•) and then precomposing 𝜖 (which by

definition is ChEn(𝐺 ◦ 𝐹, F )•) is the same as first precomposing both F (𝐹•) and F (𝐺•) by 𝜖 and then

composing horizontally:

CF (𝑌, 𝑍 ) ⊗ CF (𝑋,𝑌 ) DF (𝑌 ′, 𝑍 ′) ⊗ DF (𝑋 ′, 𝑌 ′) EF (𝑌 ′′, 𝑍 ′′) ⊗ EF (𝑋 ′′, 𝑌 ′′)

F (C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 )) F (D(𝑌 ′, 𝑍 ′) ⊗ D(𝑋 ′, 𝑌 ′)) F (E(𝑌 ′′, 𝑍 ′′) ⊗ E(𝑋 ′′, 𝑌 ′′))

CF (𝑋,𝑍 ) DF (𝑋 ′, 𝑍 ′) EF (𝑋 ′′, 𝑍 ′′) .

F(𝐹 )⊗F(𝐹 )

𝜖

F(𝐺 )⊗F(𝐺 )

𝜖 𝜖

F(𝐹⊗𝐹 )

F(•)

F(𝐺⊗𝐺 )

F(𝐹• ) F(•) F(𝐺• ) F(•)

F(𝐹 ) F(𝐺 )
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Similarly, the fact that the unity constraint is compatible with composition amounts to the following ob-

servation: First applying F to the 2-cell given by diagram (2.1) and then precomposing 𝑢 : 1 → F (1)
is the same as first applying F and precomposing 𝑢 for both triangles individually before horizontally

composing them.

Example 2.5.7. In Example 2.4.2 we have considered B-enriched categories as Cat -enriched categories,

where B ⊂ (Cat ,×, {∗}) is a monoidal 2-subcategory. This is just the functoriality of changing the enrich-

ment, applied to the inclusion functor B ↩→ Cat .
More generally, for any monoidal 2-category (V, ⊗,1) and monoidal 2-subcategory B ⊂ V , the inclusion

functor 𝜄 : B ↩→ V constitutes a changer (𝜄, 𝜖,𝑢) with 𝜖 and 𝑢 being identities. Changing the enrichment

then allows us to consider B-Cat as a subcategory ofV-Cat .
A lax V-enriched functor 𝐹 : C → D (with C and D lying in B-Cat ) is a lax B-enriched functor if and

only if all its data lies in B:

𝐹 (𝑋,𝑌 ) : C(𝑋,𝑌 ) → D(𝐹 (𝑋 ), 𝐹 (𝑌 )) ∈ B ∀𝑋,𝑌 ∈ Ob(C), 𝐹id ∈ B, 𝐹• ∈ B .

The process of changing the enrichment ChEn(C, F ) depends on two kinds of data, namely a changer

(F : V →W, 𝜖,𝑢) and aV-enriched category C ∈ V-Cat . In Theorem 2.5.6, we have shown that ChEn

is functorial in C. Our next goal is to study in which sense ChEn is functorial in the changer. This requires

a notion of morphism between changers.

Definition 2.5.8. Let (F : V → W, 𝜖,𝑢) and (G : V → W, 𝛿, 𝑣) be two changers between monoidal

2-categories (V, ⊗,1) and (W, ⊗,1). A monoidal 2-natural transformation 𝛽 : F ⇒ G is a 2-natural

transformation F ⇒ G, which respects the monoidal structure in the sense that for all objects 𝑋,𝑌 ∈
Ob(V), the following two diagrams inW commute:

F (𝑋 ) ⊗ F (𝑌 ) G(𝑋 ) ⊗ G(𝑌 )

F (𝑋 ⊗ 𝑌 ) G(𝑋 ⊗ 𝑌 )

𝛽⊗𝛽

𝜖 𝛿

𝛽

1

F (1) G(1).

𝑢 𝑣

𝛽

Definition 2.5.9. Let (V, ⊗,1) and (W, ⊗,1) bemonoidal 2-categories. The changers (laxmonoidal func-

tors of 2-categories)V →W form a category 2Cat lax
⊗ (V,W) with morphisms given by the monoidal 2-

natural transformations. Composition is defined by composing the underlying 2-natural transformations.

Theorem 2.5.10 (Functoriality of Change of Enrichment II). Let (V, ⊗,1) be a monoidal 2-category

and C aV-enriched category. Construction 2.4.1 constitutes a functor

ChEn(C,−) : 2Cat lax
⊗ (V,W) →W-Cat , F ↦→ CF, 𝛽 ↦→ C𝛽 .

The strictW-enriched functor C𝛽 : CF → CG induced by 𝛽 : F ⇒ G is defined as follows:

1. It is the identity Ob(CF) = Ob(C) → Ob(C) = Ob(CG) on objects.

2. For 𝑋,𝑌 ∈ Ob(C), its action on 1-cells is

𝛽 : F (C(𝑋,𝑌 )) → G(C(𝑋,𝑌 )).

Proof. For 𝑋,𝑌, 𝑍 ∈ Ob(C), the commuting diagrams

1 G(1) G(C(𝑋,𝑋 ))

F (1) F (C(𝑋,𝑋 ))

𝑣

𝑢

G(idC )

𝛽

F(idC )
𝛽
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F (C(𝑌, 𝑍 )) ⊗ F (C(𝑋,𝑌 )) G(C(𝑌, 𝑍 )) ⊗ G(C(𝑋,𝑌 ))

F (C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 )) G(C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ))

F (C(𝑋,𝑍 )) G(C(𝑋,𝑍 ))

𝛽⊗𝛽

𝜖 𝛿

𝛽

F(•) G(•)
𝛽

show that C𝛽 is a strict functor. It is immediate that ChEn(C,−) respects identity and composition, so it

is a functor.

Combining our two functoriality results Theorem 2.5.6 and Theorem 2.5.10, we obtain the functor

V-Cat × 2Cat lax
⊗ (V,W) →W-Cat

and thus the following result.

Theorem 2.5.11 (Functoriality of Change of Enrichment III). For two fixed monoidal 2-categories

(V, ⊗,1) and (W, ⊗,1), change of enrichment constitutes a functor

ChEn: 2Cat lax
⊗ (V,W) → [V-Cat ,W-Cat ], F ↦→ ChEn(−, F ), 𝛽 ↦→ ChEn(−, 𝛽),

where ChEn(−, F ) is defined as in Theorem 2.5.6. For a monoidal 2-natural transformation 𝛽 : F ⇒ G,
the natural transformation ChEn(−, 𝛽) : ChEn(−, F ) ⇒ ChEn(−,G) has components C𝛽 : CF → CG as

specified in Theorem 2.5.10.

2.6 2-Functoriality of Change of Enrichment

In the previous section, we have understood change of enrichment as a functor ChEn: 2Cat lax
⊗ (V,W) →

[V-Cat ,W-Cat ] for fixed monoidal 2-categories (V, ⊗,1) and (W, ⊗,1). In this section, we improve this

result by establishing change of enrichment as a 2-functor

2Cat lax
⊗ → Cat

from the 2-category of (small) monoidal 2-categories to the 2-category of (small) categories.

As the first step to making this precise, we need to define the former 2-category. We have already

described 2Cat lax
⊗ (V,W) in Definition 2.5.9, which serve as the hom-categories of the category ofmonoidal

2-categories.

Definition 2.6.1. The 2-category 2Cat lax
⊗ consists of the following data:

1. Its objects are the (small) monoidal 2-categories (V, ⊗,1).

2. The hom-categories 2Cat lax
⊗ (V,W) are given by Definition 2.5.9.

3. The identity 1-cell ofV ∈ Ob(2Cat lax
⊗ ) is (idV, id⊗, id1).

4. The composition of two changers

U V W(F,𝜖,𝑢 ) (G,𝛿,𝑣)

is the changer consisting of the composition of 2-functors G ◦ F : U →W together with

U ×U V ×V W ×W,
F×F

G◦F◦(−⊗−)

G(−)⊗G(−)

G(−⊗−)

𝛿

G(𝜖 )

1 G(1) G(F (1)) .𝑣 G(𝑢 )
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5. The horizontal composition ofmonoidal 2-natural transformations is just the horizontal composition

of the underlying 2-natural transformations.

2Cat lax
⊗ forms a 2-category essentially because themonoidal categories and the 2-categories (Cat -enriched

categories) each carry the structure of a 2-category.

This allows us to show that change of enrichment is the action on hom-categories of a functor 2Cat lax
⊗ →

Cat , which subsumes our previous functoriality results.

Theorem 2.6.2 (2-Functoriality of Change of Enrichment). There exists a strict functor

En: 2Cat lax
⊗ → Cat , V ↦→ V-Cat ,

whose action on hom-categories is given by change of enrichment

ChEn: 2Cat lax
⊗ (V,W) → [V-Cat ,W-Cat ], F ↦→ ChEn(−, F ), 𝛽 ↦→ ChEn(−, 𝛽)

as in Theorem 2.5.11.

Proof. We have to show that En: 2Cat lax
⊗ → Cat preserves identities and composition. Given the identity

changer F = (idV, id⊗, id1) of a monoidal 2-category V , its image under change of enrichment is the

functor

V-Cat →V-Cat , C ↦→ CF, 𝐺 ↦→ 𝐺F .

By unpacking the definition of CF and𝐺F in Construction 2.4.1 and Theorem 2.5.6, respectively, it becomes

apparent that this is the identity functor.

More work is required to see that composition is also preserved. To that end, consider changers

U V W .
(F,𝜖,𝑢 ) (G,𝛿,𝑣)

We claim that the functorsU-Cat →W-Cat

ChEn(−,G) ◦ ChEn(−, F ) = ChEn(−,G ◦ F ) (2.2)

are equal. We first check that the two functors agree on objects. Fixing an object C ∈ U-Cat , the left

functor sends this U-enriched category to theW-enriched category (CF)G , whereas the right functor

sends it to CG◦F . The objects of both of theseW-enriched categories are those of C. Similarly, for objects

𝑋,𝑌 ∈ Ob(C), we have
(CF)G (𝑋,𝑌 ) = G(F (C(𝑋,𝑌 ))) = CG◦F

by Construction 2.4.1 and Definition 2.6.1. The identity 1-cell is

1 G(1) G(F (1)) G(F (C(𝑋,𝑋 )))𝑣 G(𝑢 ) G(F(idC ) )

and the equality of horizontal composition, unitors and associator is also straightforward to see, showing

that the two functors (2.2) are equal on objects.

For a lax U-enriched functor 𝐻 : C → D, both functors (2.2) yield a laxW-enriched functor and from

their description in Theorem 2.5.6, we see that they are equal. Indeed, on objects both functors are given

by 𝐻 and their local action is

G(F (𝐻 )) : G(F (C(𝑋,𝑌 ))) → G
(
F

(
D

(
𝐻 (𝑋 ), 𝐻 (𝑌 )

) ) )
.

Their unity constraint is the 2-cell

1 G(1) G(F (1)) G(F (D(𝐻 (𝑋 ), 𝐻 (𝑋 ))))

G(F (C(𝑋,𝑋 )))

𝑣 G(𝑢 ) G(F(idD))

G(F(idC)) G(F(𝐻 ) )
G(F(𝐻id ) )
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and their functoriality constraint is

CG◦F (𝑌, 𝑍 ) ⊗ CG◦F (𝑋,𝑌 ) DG◦F (𝐻 (𝑌 ), 𝐻 (𝑍 )) ⊗ DG◦F (𝐻 (𝑋 ), 𝐻 (𝑌 ))

G(CF (𝑌, 𝑍 ) ⊗ CF (𝑋,𝑌 )) G(DF (𝐻 (𝑌 ), 𝐻 (𝑍 )) ⊗ DF (𝐻 (𝑋 ), 𝐻 (𝑌 )))

G(F (C(𝑌, 𝑍 ) ⊗ C(𝑋,𝑌 ))) G(F (D(𝐻 (𝑌 ), 𝐻 (𝑍 )) ⊗ D(𝐻 (𝑋 ), 𝐻 (𝑌 ))))

CG◦F (𝑋,𝑍 ) DG◦F (𝐻 (𝑋 ), 𝐻 (𝑍 )) .

G(F(𝐻 ) )⊗G(F(𝐻 ) )

𝛿 𝛿

G(F(𝐻 )⊗F(𝐻 ) )

G(𝜖 ) G(𝜖 )
G(F(𝐻⊗𝐻 ) )

G(F(•) ) G(F(𝐻• ) ) G(F(•) )

G(F(𝐻 ) )

This shows that composition of changers is preserved and hence it remains to verify that the composition

of monoidal 2-natural transformations

U V W

(F,𝜖,𝑢 )

(F′,𝜖 ′,𝑢′ )

(G,𝛿,𝑣)

(G′,𝛿 ′,𝑣′ )

𝛼 𝛽

is preserved. First horizontally composing these twomonoidal 2-natural transformations yields themonoidal

2-natural transformation G ◦ F ⇒ G′ ◦ F ′ with components (for an object 𝐶 ∈ U)

G(F (𝐶)) G(F ′(𝐶)) G′(F ′(𝐶)) .G(𝛼 ) 𝛽

By Theorem 2.5.10, its image under En: 2Cat lax
⊗ → Cat

U-Cat W-Cat

ChEn(−,G◦F)

ChEn(−,G′◦F′ )

ChEn(−,𝛽◦𝛼 )

has as components the strict identity-on-objectsW-enriched functor

CG◦F → CG′◦F′, G(F (C(𝑋,𝑌 ))) G(F ′(C(𝑋,𝑌 ))) G′(F ′(C(𝑋,𝑌 ))).G(𝛼 ) 𝛽

On the other hand, the horizontal composition

U-Cat V-Cat W-Cat

ChEn(−,F)

ChEn(−,F′ )

ChEn(−,G)

ChEn(−,G′ )

ChEn(−,𝛼 ) ChEn(−,𝛽 )

in Cat has components

(CF)G (CF′)G (CF′)G′ .
ChEn(−,G) (C𝛼 ) (CF′ )𝛽

By definition of ChEn(−,G) (see Theorem 2.5.6), the identity-on-objects strict V-enriched functor C𝛼
yields an identity-on-objects strictW-enriched functor. By unraveling the definition of ChEn(−,G), C𝛼
and (CF′)𝛽 , we conclude that this composition is the sameW-enriched functor as above, proving the

theorem.
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As was the case for the 1-categorical version Theorem 2.1.4, it follows that adjunctions are preserved

by En: 2Cat lax
⊗ → Cat .

Remark 2.6.3. By Theorem 2.1.4, in the setting of ordinary monoidal categories, change of enrichment

yields a 2-functor

Cat lax
⊗ → 2Cat , V ↦→ V-Cat ,

where the 2-category of (small)V-enriched categoriesV-Cat has theV-enriched natural transformations

as 2-cells. Recall that aV-enriched natural transformation 𝛼 : 𝐺 ⇒ 𝐻 consists of 1-cells inV

𝛼 (𝑋 ) : 1→ D(𝐺 (𝑋 ), 𝐻 (𝑋 ))

for every object 𝑋 ∈ V (called components of 𝛼) which are natural in the sense that the diagram

C(𝑋,𝑌 ) C(𝑋,𝑌 ) ⊗ 1 D(𝐻 (𝑋 ), 𝐻 (𝑌 )) ⊗ D(𝐺 (𝑋 ), 𝐻 (𝑋 ))

1 ⊗ C(𝑋,𝑌 ) D(𝐺 (𝑌 ), 𝐻 (𝑌 )) ⊗ D(𝐺 (𝑋 ),𝐺 (𝑌 )) D(𝐺 (𝑋 ), 𝐻 (𝑌 ))

�

�

𝐻⊗𝛼 (𝑋 )

•

𝛼 (𝑌 )⊗𝐺 •

inV commutes for all 𝑋,𝑌 ∈ V .

The vertical composition ofV-enriched natural transformations

C D

𝐹

𝐻

𝐺

𝛼

𝛽

has components

1 1 ⊗ 1 D(𝐺 (𝑋 ), 𝐻 (𝑋 )) ⊗ D(𝐹 (𝑋 ),𝐺 (𝑋 )) D(𝐹 (𝑋 ), 𝐻 (𝑋 )) .� 𝛽⊗𝛼 •

Using this definition verbatim for categories enriched over a monoidal 2-category (V, ⊗,1), it becomes ap-

parent thatV-Cat is not a 2-category (or bicategory) anymore, because its “hom-categories”V-Cat (C,D)
are not ordinary categories. For instance, the identityV-enriched natural transformation id : 𝐺 ⇒ 𝐺

id(𝑋 ) : 1 D(𝐺 (𝑋 ),𝐺 (𝑋 ))id
D

is not a strict identity w.r.t. vertical composition, but only an identity “up to invertible 2-cell” (where the

regions in the diagram without a 2-cell commute):

1 1 ⊗ 1 D(𝐺 (𝑋 ),𝐺 (𝑋 )) ⊗ D(𝐹 (𝑋 ),𝐺 (𝑋 ))

D(𝐹 (𝑋 ),𝐺 (𝑋 )) 1 ⊗ D(𝐹 (𝑋 ),𝐺 (𝑋 ))

D(𝐹 (𝑋 ),𝐺 (𝑋 )) .

�

𝛼

id
D⊗𝛼

id⊗𝛼

•�

id

id
D⊗id

𝜆

This demonstrates that higher-categorical tools are required to properly generalize Theorem 2.1.4.

We only sketch the basic idea. Fixing a changer (F : V → W, 𝜖,𝑢) between monoidal 2-categories

(V, ⊗,1) and (W, ⊗,1), the first step is to extend the functor

ChEn(−, F ) : V-Cat →W-Cat , C ↦→ CF, 𝐺 ↦→ 𝐺F
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from Theorem 2.5.6 by defining its action on 2-cells to be

(𝛼 : 𝐺 ⇒ 𝐻 ) ↦−→
(
ChEn(𝛼, F )(𝑋 ) : 1 F (1) DF (𝐺 (𝑋 ), 𝐻 (𝑋 ))𝑢 F(𝛼 (𝑋 ) ) )

.

This definition preserves the horizontal composition of 2-cells. Indeed, the identity V-enriched natural

transformation id : 𝐺 ⇒ 𝐺 gets mapped to theW-enriched natural transformation with components

1 F (1) DF (𝐺 (𝑋 ),𝐺 (𝑋 )),𝑢 F(idD )

which by definition of DF is the identityW-enriched natural transformation id : 𝐺F ⇒ 𝐺F .
Similarly, for twoV-enriched natural transformations

C D E,

𝐺

𝐻

𝐺 ′

𝐻 ′

𝛼 𝛽

the components of ChEn(𝛽 ◦ 𝛼, F ) are given by the composition

1 EF (𝐺 ′𝐺 (𝑋 ),𝐺 ′𝐻 (𝑋 )) F (. . . ) EF (𝐺 ′𝐺 (𝑋 ), 𝐻 ′𝐻 (𝑋 ))
F(𝐺 ′ )◦F(𝛼 )◦𝑢 F(𝛽⊗id) F(•)

and those of ChEn(𝛽, F ) ◦ ChEn(𝛼, F ) are

1 EF (𝐺 ′𝐺 (𝑋 ),𝐺 ′𝐻 (𝑋 )) EF (. . . ) ⊗ EF (. . . ) EF (𝐺 ′𝐺 (𝑋 ), 𝐻 ′𝐻 (𝑋 )),
F(𝐺 ′ )◦F(𝛼 )◦𝑢 (F(𝛽 )◦𝑢 )⊗id •̂

where we have for brevity omitted some of the objects. Expanding the definition of •̂ and canceling the

common beginning and end of the compositions, it suffices to prove that

EF (𝐺 ′𝐺 (𝑋 ),𝐺 ′𝐻 (𝑋 )) F (1 ⊗ E(𝐺 ′𝐺 (𝑋 ),𝐺 ′𝐻 (𝑋 ))) F (. . . ⊗ . . .)F(�) F(𝛽⊗id)

is equal to

EF (𝐺 ′𝐺 (𝑋 ),𝐺 ′𝐻 (𝑋 )) � 1 ⊗ EF (. . . ) F (1) ⊗ EF (. . . ) EF (. . . ) ⊗ EF (. . . ) F (. . . )𝑢⊗id F(𝛽 )⊗id 𝜖

and this follows from the naturality of 𝜖 and the unitality of F . ⃝
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3 Change of Enrichment for represented Changers

For a given category C, represented functors Hom(𝐶,−) : C → Set play a fundamental role for ordinary

categories. Since any monoidal 2-categories (V, ⊗,1) is by definition Cat -enriched, we obtain represented

2-functors

V(𝐶,−) : V → Cat

and as in the 1-dimensional case, these are particularly easy to understand. In this chapter, we characterize

when a represented 2-functor V(𝐶,−) : V → Cat is a changer. It turns out that this is equivalent to the

structure of a comonoid on the representing object 𝐶 (see Theorem 3.1.3). This result allows us to give

some key examples, like the underlying bicategory functor (see Definition 3.2.2).

3.1 Represented Changers

In an arbitrary small 2-category (i.e. Cat -enriched category)V , the functorsV(𝐶,−) : V → Cat

𝑋 𝑌

𝑔

ℎ

𝛼 ↦−→ V(𝐶,𝑋 ) V(𝐶,𝑌 ),

𝑔◦−

ℎ◦−

𝛼◦−

represented by a fixed object 𝐶 ∈ V offer an important source of functors V → Cat . If (V, ⊗,1) is a
monoidal 2-category, it is thus natural to consider changing the enrichment w.r.t. such a functor, which

would yield a functorV-Cat → Bicat .
However, this requiresV(𝐶,−) : (V, ⊗,1) → (Cat ,×, {∗}) to be a changer (i.e. to be lax monoidal), so

additional structure is required. This extra structure is precisely that of a comonoid on the representing

object𝐶 ∈ V , as we will see. Before we state and prove the corresponding theorem, we recall the enriched

Yoneda lemma (see e.g. [Kel05, Sec 1.9]) for Cat .

Lemma 3.1.1 (Cat-enriched Yoneda lemma). Let V be a small 2-category and 𝐹 : V → Cat be a 2-

functor. A 2-natural transformation 𝛼 : V(𝐶,−) ⇒ 𝐹 is uniquely determined by its value at the identity

id𝐶 ; that is, by the object 𝛼 (𝐶) (id𝐶 ) ∈ 𝐹 (𝐶).
On the other hand, any object 𝑐 ∈ 𝐹 (𝐶) induces a 2-natural transformation 𝛼 : V(𝐶,−) ⇒ 𝐹 with compo-

nents

𝛼 (𝑋 ) : V(𝐶,𝑋 ) [𝐹 (𝐶), 𝐹 (𝑋 )] 𝐹 (𝑋 ) .𝐹 eval𝑐

This yields a bijection between objects 𝑐 ∈ 𝐹 (𝐶) and 2-natural transformations 𝛼 : V(𝐶,−) ⇒ 𝐹 .

This is sometimes called theweak enriched Yoneda lemma, referring to the fact that there is also a stronger
version, stating that the above bijection in fact constitutes an isomorphism of categories.

The following special case is obtained from Lemma 3.1.1 by observing that the functor represented by

(𝐶, 𝐷) ∈ V ×V isV(𝐶,−) × V(𝐷,−) : V ×V → Cat .

Lemma 3.1.2. Let V be a small 2-category and 𝐹 : V × V → Cat be a 2-functor. There is a bijection

between the set of 2-natural transformations 𝛼 : V(𝐶,−) × V(𝐷,−) ⇒ 𝐹 and objects 𝑐 ∈ 𝐹 (𝐶, 𝐷). It

maps a 2-natural transformation 𝛼 : V(𝐶,−) ×V(𝐷,−) ⇒ 𝐹 to 𝛼 (𝐶, 𝐷) (id𝐶 , id𝐷 ) ∈ 𝐹 (𝐶, 𝐷) and an object

𝑐 ∈ 𝐹 (𝐶, 𝐷) to the 2-natural transformation with components

𝛼 (𝑋,𝑌 ) : V(𝐶,𝑋 ) × V(𝐷,𝑌 ) [𝐹 (𝐶, 𝐷), 𝐹 (𝑋,𝑌 )] 𝐹 (𝑋,𝑌 ) .𝐹 eval𝑐
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Theorem 3.1.3 (Correspondence between represented Changers and Comonoids). Let (V, ⊗,1)
be a small monoidal 2-category, 𝐶 ∈ V be an object and consider the functor

V(𝐶,−) : (V, ⊗,1) → (Cat ,×, {∗})

represented by 𝐶 . The structure of a comonoid (𝐶, 𝜇 : 𝐶 → 𝐶 ⊗ 𝐶, 𝜂 : C → 1) on 𝐶 ∈ V makesV(𝐶,−)
into a changer (V(𝐶,−), 𝛿, 𝑣), where the 2-natural transformation 𝛿 : V(𝐶,−) ×V(𝐶,−) ⇒ V(𝐶,− ⊗ −)
has components

𝛿 (𝑋,𝑌 ) : V(𝐶,𝑋 ) × V(𝐶,𝑌 ) V(𝐶 ⊗ 𝐶,𝑋 ⊗ 𝑌 ) V(𝐶,𝑋 ⊗ 𝑌 ) .⊗ −◦𝜇

and 𝑣 : {∗} → V(𝐶,1) is the functor choosing 𝜂.
Conversely, a changer (V(𝐶,−), 𝛿, 𝑣) yields a comonoid (𝐶, 𝜇, 𝜂) on 𝐶 ∈ C via

𝛿 (𝐶,𝐶) (id𝐶 , id𝐶 ) : 𝐶 → 𝐶 ⊗ 𝐶, 𝜂 = 𝑣 (∗).

This yields a bijection between changers represented by 𝐶 and comonoid structures on 𝐶 .

Proof. First note that the component 𝛿 (𝑋,𝑌 ) can equivalently be written as the composition

V(𝐶,𝑋 ) × V(𝐶,𝑌 ) [V(𝐶,𝐶 ⊗ 𝐶),V(𝐶,𝑋 ⊗ 𝑌 )] V(𝐶,𝑋 ⊗ 𝑌 ),V(𝐶,−⊗−) eval𝜇

which is exactly the 2-natural transformation corresponding to 𝜇 in Lemma 3.1.2. It follows that 𝛿 is

2-natural and that the above constitutes a bijection between triples (V(𝐶,−), 𝛿, 𝑣) and (𝐶, 𝜇, 𝜂). Con-

sequently, we have to show that (V(𝐶,−), 𝛿, 𝑣) is a lax monoidal functor on the underlying monoidal

categories if and only if (𝐶, 𝜇, 𝜂) is a comonoid in them.

Denoting the leftV-associator by 𝜆, one of the unitality diagrams of (V(𝐶,−), 𝛿, 𝑣) is

{∗} × V(𝐶,𝑋 ) V(𝐶,1) × V(𝐶,𝑋 )

V(𝐶 ⊗ 𝐶,1 ⊗ 𝑋 )

V(𝐶,𝑋 ) V(𝐶,1 ⊗ 𝑋 ) .

𝑣×id

�

⊗

−◦𝜇

𝜆◦−

This diagram commutes if and only if every 1-cell 𝑓 : 𝐶 → 𝑋 is equal to the composition

𝐶 𝐶 ⊗ 𝐶 1 ⊗ 𝑋 𝑋,
𝜇 𝜂⊗𝑓 𝜆

which by naturality of 𝜆 is equal to

𝐶 𝐶 ⊗ 𝐶 1 ⊗ 𝐶 𝐶 𝑋 .
𝜇 𝜂⊗id 𝜆 𝑓

This equality being true for every 𝑓 : 𝐶 → 𝑋 is equivalent to it being true for the identity id : 𝐶 → 𝐶

𝐶 𝐶 ⊗ 𝐶 1 ⊗ 𝐶 𝐶
𝜇 𝜂⊗id 𝜆

= 𝐶 𝐶,
id

which is exactly the left unitality of (𝐶, 𝜇, 𝜂). An analogous argument applies to the other unitality dia-

gram.

Writing 𝛼 for the V-associator, we argue analogously for the associativity of (V(𝐶,−), 𝛿, 𝑣). Its associa-
tivity translates to the statement that for 1-cells 𝑓 : 𝐶 → 𝑋 , 𝑔 : 𝐶 → 𝑌 and ℎ : 𝐶 → 𝑍 , the diagram

𝐶 𝐶 ⊗ 𝐶 𝐶 ⊗ 𝑍 (𝐶 ⊗ 𝐶) ⊗ 𝑍 (𝑋 ⊗ 𝑌 ) ⊗ 𝑍

𝐶 ⊗ 𝐶 𝑋 ⊗ 𝐶 𝑋 ⊗ (𝐶 ⊗ 𝐶) 𝑋 ⊗ (𝑌 ⊗ 𝑍 )

𝜇

𝜇

id⊗ℎ 𝜇⊗id (𝑓 ⊗𝑔)⊗id

𝛼

𝑓 ⊗id id⊗𝜇 id⊗(𝑔⊗ℎ)
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commutes. By functoriality of ⊗, this can be rewritten as

𝐶 𝐶 ⊗ 𝐶 (𝐶 ⊗ 𝐶) ⊗ 𝐶 (𝑋 ⊗ 𝑌 ) ⊗ 𝑍

𝐶 ⊗ (𝐶 ⊗ 𝐶) 𝑋 ⊗ (𝑌 ⊗ 𝑍 ) .

𝜇 𝜇⊗id

id⊗𝜇

(𝑓 ⊗𝑔)⊗ℎ

𝛼

𝑓 ⊗(𝑔⊗ℎ)

The naturality of 𝛼 shows that the diagram is commutative if and only if

(𝑓 ⊗ (𝑔 ⊗ ℎ)) ◦ 𝛼 ◦ (𝜇 ⊗ id) ◦ 𝜇 = (𝑓 ⊗ (𝑔 ⊗ ℎ)) ◦ (id ⊗ 𝜇) ◦ 𝜇

and setting 𝑓 = 𝑔 = ℎ = id𝐶 reveals that this is precisely the associativity condition

𝛼 ◦ (𝜇 ⊗ id) ◦ 𝜇 = (id ⊗ 𝜇) ◦ 𝜇

of (𝐶, 𝜇, 𝜂).

The result states that finding a represented changerV(𝐶,−) : (V, ⊗,1) → (Cat ,×, {∗}) is the same as

constructing a comonoid inV , which gives rise to some important changes of enrichment, as we will see

in the next section.

Remark 3.1.4. The result is best understood in the context of Day convolution, originally developed by

Day in [Day70a; Day70b]. Let (V, ⊗,1) be a cocomplete closed symmetric monoidal category (in our

case (V, ⊗,1) = (Cat ,×, {∗})) and (C, ⊗,1) be a small V-enriched monoidal category. Then the Day
convolution on the category [C,V] ofV-enriched functors C → V

∗ : [C,V] × [C,V] → [C,V]

can be defined forV-enriched functors 𝐹,𝐺 : C → V as the enriched left Kan extension

C × C V

C,

𝐹⊠𝐺

⊗ 𝐹∗𝐺

where

⊠ : [C,V] × [C,V] [C × C,V ×V] [C × C,V],× ⊗◦− (𝐹,𝐺) ↦→ 𝐹 (−) ⊗ 𝐺 (−)

denotes the external tensor product [Ric20, Def 9.8.1]. By the universal property of the left Kan extension,

this means that for a V-enriched functor 𝐻 : C → V , V-enriched natural transformations 𝐹 ∗ 𝐺 ⇒ 𝐻

correspond toV-enriched natural transformations 𝐹 (−) ⊗ 𝐺 (−) ⇒ 𝐻 (− ⊗ −).
Equipped with Day convolution and theV-enriched functor C(1,−) represented by the unit object 1 ∈ C,
the category ofV-enriched functors [C,V] becomes a monoidal category. Moreover, a monoid

(𝐹 : C → V, 𝐹 ∗ 𝐹 ⇒ 𝐹, C(1,−) ⇒ 𝐹 )

in [C,V] is the same as a lax monoidal functor

(𝐹 : C → V, 𝜖 : 𝐹 (−) ⊗ 𝐹 (−) ⇒ 𝐹 (− ⊗ −), 𝑢 : 1⇒ 𝐹 (1))

(see [Day70a, Exa 3.3.2] for the case of commutative monoids)
1
. In fact, there is an equivalence of cate-

gories between the category of lax monoidal functors and the category of monoids in [C,V] w.r.t. Day
1
This result is e.g. applied in the programming language Haskell in order to understand applicative functors (represented by the
type class Applicative), see [RJ17].
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convolution [Day70b, Prop 9.8.8].

Appealing to the enriched density formula, one observes that the Yoneda embedding

Cop ↩→ [C,V], 𝐶 ↦→ C(𝐶,−)

is a strong monoidal functor (when [C,V] is equipped with Day convolution).
2

This observation puts Theorem 3.1.3 in a greater context. Indeed, a comonoid (𝐶, 𝜇, 𝜂) in C (i.e. a monoid

in Cop) yields the monoid (since strong monoidal functors preserve monoids)(
C(𝐶,−), C(𝐶,−) ∗ C(𝐶,−) � C(𝐶 ⊗ 𝐶,−)

−◦𝜇
=⇒ C(𝐶,−), C(1,−)

−◦𝜂
=⇒ C(𝐶,−)

)
,

which corresponds to a lax monoidal Cat -enriched functor and this is the changer from the theorem. That

conversely every monoid in [C,V] stems from a comonoid in C is a consequence of the fully faithfulness

of the Yoneda embedding. ⃝

We now consider monoidal 2-natural transformations of the form

𝛼 : (V(𝐶,−), 𝛿, 𝑣) ⇒ (F , 𝜖,𝑢), V Cat .

V(𝐶,−)

F

𝛼

Our interest in these is motivated by the 2-functoriality of change of enrichment (Theorem 2.6.2), which

translates such a monoidal 2-natural transformation into a natural transformation

V-Cat Bicat .

ChEn(−,V(𝐶,−) )

ChEn(−,F)

For example, if the object 𝐶 is chosen as the unit object 1 ∈ V , then ChEn(C,V(1,−)) is the bicategory
underlying C (see Definition 3.2.2), so in this case the induced natural transformation may be thought of

as an inclusion (see Theorem 3.2.5).

Thus we are compelled to understand monoidal 2-natural transformations of the above form. To that

end, let (𝐶, 𝜇, 𝜂) denote the corresponding comonoid structure on 𝐶 from Theorem 3.1.3. By the Cat -
enriched Yoneda lemma (Lemma 3.1.1), defining a 2-natural transformation 𝛼 : V(𝐶,−) ⇒ F is the same

data as picking an object 𝑐 ∈ F (𝐶). However, not every choice of such an object yields a monoidal 2-

natural transformation, since this additionally requires the diagrams

V(𝐶,𝑋 ) × V(𝐶,𝑌 ) F (𝑋 ) × F (𝑌 )

V(𝐶,𝑋 ⊗ 𝑌 ) F (𝑋 ⊗ 𝑌 )

𝛼×𝛼

𝛿 𝜖

𝛼

{∗}

V(𝐶,1) F (1)

𝑣 𝑢

𝛼

(3.1)

to commute for all objects𝑋,𝑌 ∈ V . Observe that the left diagram in diagram (3.1) demands an equality of

2-natural transformationsV(𝐶,−) ×V(𝐶,−) ⇒ F (− ⊗ −), which by Lemma 3.1.2 is equivalent to asking

that they agree on the object (id𝐶 , id𝐶 ) ∈ V(𝐶,𝐶) ×V(𝐶,𝐶). Using the definition of 𝛿 , 𝛼 and the equality

𝛼 (𝐶) (id𝐶 ) = 𝑐 , this means that the left diagram commutes if and only if

𝜖 (𝐶,𝐶) (𝑐, 𝑐) = F (𝜇) (𝑐) ∈ F (𝐶 ⊗ 𝐶) .

Similarly, since the 1-component of 𝛼 is

𝛼 (1) : V(𝐶,1) [F (𝐶), F (1)] F (1),F eval𝑐

2
In fact, the Yoneda embedding exhibits [C,V] as the free monoidal cocompletion of C [IK86, Thm 5.1].
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the right diagram in (3.1) commutes if and only if

F (𝜂) (𝑐) = 𝑢 (∗) ∈ F (1) .

We summarize our result, characterizingmonoidal 2-natural transformations𝛼 : (V(𝐶,−), 𝛿, 𝑣) ⇒ (F , 𝜖,𝑢).
This can be seen as a version of the Yoneda lemma for monoidal 2-categories.

Lemma3.1.5 (Yoneda lemma formonoidal 2-categories). Let (V, ⊗,1) be a smallmonoidal 2-category

and (F : V → Cat , 𝜖,𝑢) be a changer. Denote the comonoid in V corresponding to the represented

changer (V(𝐶,−), 𝛿, 𝑣) by (𝐶, 𝜇, 𝜂).
The bijection from Lemma 3.1.1 between 2-natural transformations𝛼 : V(𝐶,−) ⇒ F and objects 𝑐 ∈ F (𝐶)
restricts to a bijection between monoidal 2-natural transformations 𝛼 : (V(𝐶,−), 𝛿, 𝑣) ⇒ (F , 𝜖,𝑢) and ob-
jects 𝑐 ∈ F (𝐶) satisfying

F (𝜇) (𝑐) = 𝜖 (𝐶,𝐶) (𝑐, 𝑐) ∈ F (𝐶 ⊗ 𝐶), F (𝜂) (𝑐) = 𝑢 (∗) ∈ F (1).

If the changer (F : V → Cat , 𝜖,𝑢) is strong monoidal, then it preserves comonoids, so a comonoid

(𝐶, 𝜇, 𝜂) inV induces the comonoid (in (Cat ,×, {∗}))

(
F (𝐶), F (𝐶) F (𝐶 ⊗ 𝐶) F (𝐶) × F (𝐶),F(𝜇 ) 𝜖−1 F (𝐶) F (1) {∗}F(𝜂 ) 𝑢−1 )

.

The requirements on the object 𝑐 ∈ F (𝐶) then precisely state that the corresponding functor {∗} → F (𝐶)
is a morphism of comonoids (where {∗} carries the trivial comonoid structure).

It is well-known that in a cartesian monoidal category, any object carries a unique comonoid structure

and any morphism becomes a morphism of comonoids. Consequently, if F is strong monoidal, 2-natural

transformationsV(𝐶,−) ⇒ F are automatically lax monoidal.

Theorem 3.1.6. If (F : V → Cat , 𝜖,𝑢) is a strong changer, then lax monoidal 2-natural transformations

V(𝐶,−) ⇒ F correspond to the choice of an object 𝑐 ∈ F (𝐶).

Combining the 2-functoriality of change of enrichment (Theorem 2.6.2) with Lemma 3.1.5 establishes

the following result, creating a relationship between change of enrichment along a suitable represented

functor and along an arbitrary changer.

Theorem 3.1.7. Let (V, ⊗,1) be a small monoidal 2-category and (F : V → Cat , 𝜖,𝑢) be a changer. Let
𝐶 ∈ V be an object carrying a comonoid structure (𝐶, 𝜇, 𝜂), which by Theorem 3.1.3 is equivalent to the

represented functorV(𝐶,−) : V → Cat being equipped with the structure of a changer.

Any object 𝑐 ∈ F (𝐶) satisfying

F (𝜇) (𝑐) = 𝜖 (𝐶,𝐶) (𝑐, 𝑐) ∈ F (𝐶 ⊗ 𝐶), F (𝜂) (𝑐) = 𝑢 (∗) ∈ F (1)

induces a natural transformation

V-Cat Bicat .

ChEn(−,V(𝐶,−) )

ChEn(−,F)

The component ChEn(C,V(𝐶,−)) → ChEn(C, F ) at C ∈ V-Cat is a strict functor that is the identity on

objects and acts via

V(𝐶, C(𝐴, 𝐵)) [F (𝐶), F (C(𝐴, 𝐵))] F (C(𝐴, 𝐵)) .F eval𝑐
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3.2 Underlying Bicategory

Any monoidal category (V, ⊗,1) carries the structure of a comonoid on its unit object 1, where the co-

multiplication 𝜇 : 1→ 1 ⊗ 1 is the isomorphism given by theV-associators
3
and the counit 1→ 1 is the

identity.

If (V, ⊗,1) is a (small) monoidal 2-category, then by Theorem 3.1.3, this comonoid yields a changer

(V(1,−) : (V, ⊗,1) −→ (Cat ,×, {∗}), 𝜖, 𝑢),

where the 2-natural transformation 𝜖 : V(1,−)×V(1,−) ⇒ V(1,−⊗−) is comprised of the components

𝜖 (𝐴, 𝐵) : V(1, 𝐴) × V(1, 𝐵) V(1 ⊗ 1, 𝐴 ⊗ 𝐵) V(1, 𝐴 ⊗ 𝐵)⊗ −◦𝜇

and the functor 𝑢 : {∗} → V(1,1) picks the identity id1.

Example 3.2.1.

1. For (V, ⊗,1) = (Cat ,×, {∗}), the functorV({∗},−) : Cat → Cat is the identity, if we identify func-

tors {∗} → C and natural transformations between them by their images.

2. If (V, ⊗,1) is a monoidal category considered as a monoidal 2-category with only identity 2-cells,

thenV(1,−) : V → Cat factors over the inclusion functor (Set ,×, {∗}) ↩→ (Cat ,×, {∗}):

V Set Cat .
V(1,−)

For instance, if (V, ⊗,1) = (Mod 𝑅, ⊗𝑅, 𝑅) is the category of 𝑅-modules over a commutative ring 𝑅,

then the functor Mod 𝑅 (𝑅,−) : Mod 𝑅 → Set is (isomorphic to) the forgetful functor Mod 𝑅 → Set .
Similarly, the forgetful functor Top → Set is represented by the singleton topological space {∗}.

Definition 3.2.2. By Theorem 2.5.6, changing the enrichment using the changer (V(1,−), 𝜖,𝑢) produces
the underlying bicategory functor

(−)0 : V-Cat → Bicat .

As the name suggests, this functor assigns a givenV-enriched category the bicategory that “underlies”

it.

Example 3.2.3.

1. Of course, the bicategory underlying a bicategory is itself; that is, if (V, ⊗,1) = (Cat ,×, {∗}), then
the functor (−)0 : Bicat → Bicat is (isomorphic to) the identity. Note that this follows immediately

from the isomorphism Cat ({∗},−) � id and the 2-functoriality of change of enrichment (Theo-

rem 2.6.2).

2. Regarding a monoidal category (V, ⊗,1) as a monoidal 2-category with only identity 2-cells, the

factorization from Example 3.2.1 gives (by functoriality) rise to the factorization

(−)0 : V-Cat → Cat ↩→ Bicat .

Here we used that the inclusion Set ↩→ Cat is product-preserving and thus a cartesian changer. The

functor V-Cat → Cat is the underlying category functor for (ordinary) enriched categories, as it is

treated e.g. in [Kel05, Sec 1.3].

The significance of the functor represented by the unit object is demonstrated by the following result.

Lemma 3.2.4. The changer V(1,−) : V → Cat (equipped with the structure from above) is an initial

object in the category of changers (V, ⊗,1) → (Cat ,×,1).
3
In a monoidal category, the 1-component of the left and right unitor are equal. This follows from the coherence theorem for

monoidal categories or can be deduced directly (see [Eti+16, Cor 2.2.5]).
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Proof. Let (F : V → Cat , 𝜖,𝑢) be a changer. By Lemma 3.1.5, monoidal 2-natural transformations

𝛼 : V(𝐶,−) ⇒ F

correspond to objects 𝑐 ∈ F (1), such that

F (𝜆−1(1)) (𝑐) = 𝜖 (1,1) (𝑐, 𝑐) ∈ F (1 ⊗ 1), F (id1) (𝑐) = 𝑢 (∗) ∈ F (1).

By functoriality of F , the second condition forces 𝑐 = 𝑢 (∗) and the unitality of F shows that F (𝜆−1(1))
is equal to

F (1) {∗} × F (1) F (1) × F (1) F (1 ⊗ 1) .� 𝑢×id 𝜖

We finish the proof by noting that this composition carries 𝑐 = 𝑢 (∗) to 𝜖 (1,1) (𝑐, 𝑐), as desired.

Because of this universal property, the underlying bicategory is the “smallest” bicategory, that can be

obtained from a given V-enriched category using a changer V → Cat . This is made precise by the

following theorem, which is a version of Theorem 3.1.7.

Theorem 3.2.5. Let (V, ⊗,1) be a small monoidal 2-category and (F : V → Cat , 𝜖,𝑢) be a changer. De-
note the unique object in the image of 𝑢 by 𝑢∗ := 𝑢 (∗) ∈ F (1). Then there exists a natural transformation

V-Cat Bicat

(−)0

ChEn(−,F)

whose components C0 → ChEn(C, F ) are strict functors that are the identity on objects and are deter-

mined by

V(1, C(𝐴, 𝐵)) [F (1), F (C(𝐴, 𝐵))] F (C(𝐴, 𝐵)) .F eval𝑢∗

Proof. By Lemma 3.2.4, there exists a unique monoidal 2-natural transformation V(1,−) ⇒ F induced

by 𝑢∗ ∈ F (1), so the 2-functoriality of change of enrichment (Theorem 2.6.2) yields the assertion.

This canonical natural transformation describes the way in which the underlying bicategory C0 actually
underlies the bicategory CF . Changing perspectives, this also allows us to think of CF as an “extension”

of C0.

Example 3.2.6. Let us spell this out in the case of the cartesian monoidal category (Cat ,×, {∗}). As men-

tioned in Example 3.2.1, in this case (−)0 is the identity functor Cat → Cat , assuming we identify functors

{∗} → C and natural transformations between them by their images.

Thus for any changer (F : Cat → Cat , 𝜖,𝑢), Theorem 3.2.5 produces a natural transformation id ⇒
ChEn(−, F ). The component C → ChEn(C, F ) at a fixed bicategory C acts via

𝐴 𝐵

𝑓

𝑔

𝛼 ↦−→ {∗} F ({∗}) F (C(𝐴, 𝐵))𝑢

F(const(𝑓 ) )

F(const(𝑔) )

F(const(𝛼 ) )

for objects 𝐴, 𝐵 ∈ C.
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3.3 Represented Changers for cartesian monoidal 2-Categories

It is well-known that any object 𝐶 ∈ V in a cartesian monoidal category (V,×, {∗}) has the unique

structure of a comonoid, where the comultiplication is given by the diagonal morphism 𝐶 → 𝐶 × 𝐶 and

the counit is the unique morphism 𝐶 → {∗} into the terminal object {∗}.
By Theorem 3.1.3, this implies that in a cartesian monoidal 2-category, every represented functor

V(𝐶,−) : V → Cat

becomes a changer in a unique way. The components of the corresponding 2-natural transformation

𝜖 : V(𝐶,−) × V(𝐶,−) ⇒ V(𝐶,− × −) are given by the functor induced by the universal property of

the product

𝜖 (𝐴, 𝐵) : V(𝐶,𝐴) × V(𝐶, 𝐵) → V(𝐶,𝐴 × 𝐵).

This reflects the fact that V(𝐶,−), being a represented functor, preserves limits and thus products. In

particular,V(𝐶,−) is a cartesian changer.

Applying this to the cartesian monoidal category (Cat ,×, {∗}) yields multiple interesting examples.

Example 3.3.1. Fix an arbitrary category C. The internal hom of Cat gives the changer

Cat (C,−) : Cat → Cat , D ↦→ [C,D]

transforming a category D into the category of functors C → D and acting by postcomposition on the

functor category [D, E].
Changing the enrichment (see Construction 2.4.1) along this changer transforms bicategories into bicat-

egories. The special case of monoidal categories was covered in Example 2.4.3. We illustrate this further

by mentioning some particular choices of C:

1. Let C = • → • be the interval category, so that [C,D] = Mor(D) is the arrow category. Then

change of enrichment implies that any bicategory D can be extended to a bicategory on the same

objects such that D(𝑋,𝑌 ) becomes Mor(D(𝑋,𝑌 )).
In particular, if D is a monoidal category, then Mor(D) is also monoidal.

2. If C is a discrete category, then the functor category [C,D] is isomorphic to the product category∏
𝑉 ∈C D. Therefore, a bicategoryD can be extended to another bicategory by replacing the category

D(𝑋,𝑌 ) with ∏
𝑉 ∈C D(𝑋,𝑌 ).

3. Let C = Δop
be the opposite of the simplex category Δ. Then [C,D] is the category of simplicial

objects in D. It follows that replacing D(𝑋,𝑌 ) in a bicategory D by the corresponding simplicial

object gives rise to another bicategory.

For example, this produces the cartesian monoidal category of simplicial sets (sSet ,×, {∗}) from
(Set ,×, {∗}).
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4 Application to the Bicategory of Spans

As an application of changing the enrichment for categories enriched over monoidal 2-categories, we

explain how to construct an extended bicategory of spans Spanext (C) from the ordinary bicategory of

spans Span (C). Spanext (C) has the same objects and 1-cells, but its 2-cells are equivalence classes of spans

instead of the usual morphisms in C:

𝑋

𝐴 𝐵

𝑌

{

𝑋

𝐴 𝑍 𝐵

𝑋 ′.

Since we essentially want to replace the 2-cells of Span (C), the idea of using change of enrichment presents

itself.

The chapter starts by introducing the ordinary category of spans Span
1
(C) and observing its functorial-

ity, which yields the changer Span
1
(see Definition 4.1.4) implementing the replacement of 2-cells described

above. Then we define the bicategory of spans and mention some of its properties. We finish the chapter

with the aforementioned construction of the extended bicategory of spans and explain how some of the

properties of the bicategory of spans “formally” translate to the extended bicategory of spans.

4.1 The Category of Spans

As a first step towards the bicategory of spans, we motivate and define the ordinary category of spans.

Let C be a category. By definition, the morphisms are “asymmetric” in the sense that they have an

explicitly defined domain and codomain. A natural idea is to “symmetrize” the category C by keeping its

objects and replacing its ordinary class of morphisms by spans (also called correspondences); i.e. pairs of
morphisms 𝑓 : 𝑋 → 𝐵, 𝑔 : 𝑋 → 𝐵, written as

𝐴 𝑋 𝐵.
𝑓 𝑔

Note that a span with 𝑓 = id𝐴 amount to a morphism 𝑔 : 𝐴→ 𝐵 in C and a span with 𝑔 = id𝐵 is essentially

just a morphism 𝑓 : 𝐵 → 𝐴. In this sense, spans really eliminate the asymmetry between domain and

codomain of a morphism.

Furthermore, whenever the ambient category C has products, the data of a span 𝐴 𝑋 𝐵
𝑓 𝑔

is the

same as a morphism 𝑋 → 𝐴×𝐵 into the product, allowing us to view spans as “generalized relations”, see

Example 4.1.2.

Assuming C has pullbacks, spans can then be composed by taking pullbacks, giving a category of spans.

Definition 4.1.1. Let C be a category with pullbacks. The corresponding category of spans Span
1
(C)

has as objects the objects of C. A morphism 𝐴→ 𝐵 is an equivalence class of spans

𝐴 𝑋 𝐵,
𝑓 𝑔

where two spans

𝐴 𝑋 𝐵, 𝐴 𝑋 ′ 𝐵
𝑓 𝑔 𝑓 ′ 𝑔′
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are identified if there exists an isomorphism 𝜙 : 𝑋 → 𝑋 ′ making the diagram

𝑋

𝐴 𝐵

𝑋 ′

𝑓 𝑔

𝜙

𝑓 ′ 𝑔′

commute. The composition of two spans

𝐴 𝑋 𝐵, 𝐵 𝑌 𝐶
𝑓 𝑔 𝑓 ′ 𝑔′

is given by the pullback

𝑋 ×𝐵 𝑌

𝑋 𝑌

𝐴 𝐵 𝐶.
𝑓 𝑔 𝑓 ′ 𝑔′

⌟

Technically, for this to be a proper category, we have to choose pullbacks (using the axiom of choice),

so that composition of functions actually constitutes a function Hom(𝐵,𝐶) × Hom(𝐴, 𝐵) → Hom(𝐴,𝐶).
The identity 𝐴→ 𝐴 is the span

𝐴 𝐴 𝐴.
id𝐴 id𝐴

The equivalence classes are needed so that composition is associative and the above span is an identity.

Example 4.1.2.

1. Consider the category of sets Set consisting of the sets as objects and functions between them as

morphisms. The objects in its category of spans Span
1
(Set ) are just sets and the morphisms are

equivalence classes of spans consisting of two functions 𝐴 𝑋 𝐵.
𝑓 𝑔

If 𝑓 or 𝑔 is injective, then

the induced morphism 𝑋 → 𝐴 × 𝐵 is injective and thus constitutes an isomorphism onto its image

𝑅 ⊂ 𝐴 × 𝐵, which is simply a relation. Therefore, as a morphism in Span
1
(Set ), 𝐴 𝑋 𝐵

𝑓 𝑔

represents the same equivalence class as the relation 𝑅 ⊂ 𝐴 × 𝐵:

𝑋

𝐴 𝐵

𝑅.

𝑓 𝑔

�

By definition, the composition of two relations 𝑅 ⊂ 𝐴 × 𝐵 and 𝑆 ⊂ 𝐵 ×𝐶 is the relation

𝑆 ◦ 𝑅 = {(𝑎, 𝑐) ∈ 𝐴 ×𝐶 : ∃ 𝑏 ∈ 𝐵 : (𝑎, 𝑏) ∈ 𝑅, (𝑏, 𝑐) ∈ 𝑆} ⊂ 𝐴 ×𝐶.

It follows that Span
1
(Set ) contains the well-known category of relations Rel as a subcategory.

2. A more algebraic version of the previous example is obtained by replacing Set with the category

Mod 𝑅 of left𝑅-modules over a fixed ring𝑅. The same argument as in the previous example then leads

to the subcategory of additive relations AddRel , whose objects are 𝑅-modules and whose morphisms

are additive relations. This means that a morphism 𝐾 : 𝑀 → 𝑁 is a submodule of the direct sum

𝑀 ⊕ 𝑁 .
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3. Similarly, one can fix a group 𝐺 and consider left 𝐺-sets. In this case, a morphism 𝑆 : 𝑋 → 𝑌 in the

corresponding subcategory is a𝐺-invariant subsets of𝑋 ×𝑌 (with group action𝑔.(𝑥,𝑦) := (𝑔.𝑥, 𝑔.𝑦)).

Definition 4.1.3. Let Cat denote the 2-category of (small) categories. The 2-subcategory Catpb ⊂ Cat
consists of the (small) categories with pullbacks as objects and the functors that preserve pullbacks as

1-cells. Its 2-cells are those natural transformations 𝛼 : 𝐹 ⇒ 𝐺 whose naturality squares

𝐹 (𝐴) 𝐺 (𝐴)

𝐹 (𝐵) 𝐺 (𝐵)

𝛼 (𝐴)

𝐹 (𝑓 ) 𝐺 (𝑓 )

𝛼 (𝐵)

are pullbacks for all morphisms 𝑓 : 𝐴→ 𝐵. Lemma 4.2.5 guarantees that this actually forms a 2-subcategory

in that it is closed under composition of 2-cells.

Definition 4.1.4. We observe that the category of spans construction extends to a strict functor

Span
1
: Catpb → Cat , C ↦→ Span

1
(C) .

It maps a pullback-preserving functor 𝐹 : C → D to the functor Span
1
(𝐹 ) : Span

1
(C) → Span

1
(D) which

applies 𝐹 to each span. A natural transformation 𝛼 : 𝐹 ⇒ 𝐺 whose naturality squares are pullbacks yields

the natural transformation Span
1
(𝛼) : Span

1
(𝐹 ) → Span

1
(𝐺) with components

𝐹 (𝐴) 𝐹 (𝐴) 𝐺 (𝐴) .
id𝐹 (𝐴) 𝛼 (𝐴)

That Span
1
(𝛼) indeed defines a natural transformation follows from the assumption that the naturality

squares of 𝛼 are pullback squares.

Remark 4.1.5. For any category C with pullbacks, there is an inclusion functor

𝜄 : C ↩→ Span
1
(C),

which is the identity on objects and maps a morphism 𝑓 : 𝐴→ 𝐵 to the span
1 𝐴 𝐴 𝐵

id𝐴 𝑓
. ⃝

Note that we can also view Span
1
as a functor into the arrow category Mor(Cat ) := [• → •, Cat ]:

Span
1
: Catpb → Mor(Cat ), C ↦→

(
𝜄 : C ↩→ Span

1
(C)

)
, 𝐹 ↦→

(
𝐹, Span

1
(𝐹 )

)
.

The symmetry of the category of spans Span
1
(C) manifests itself in the fact that it is a dagger category.

Lemma 4.1.6. For a category with pullbacks C, its category of spans Span
1
(C) is a dagger category when

equipped with the involution † : HomSpan
1
(C) (𝐴, 𝐵) → HomSpan

1
(C) (𝐵,𝐴) that “mirrors” a span:

† :
(
𝐴 𝑋 𝐵

𝑓 𝑔
)
↦−→

(
𝐵 𝑋 𝐴

𝑔 𝑓
)
.

Example 4.1.7. The category of relations Rel from Example 4.1.2 inherits this dagger category structure,

mapping a relation 𝑅 ⊂ 𝐴 × 𝐵 to its converse relation

𝑅† := {(𝑏, 𝑎) ∈ 𝐵 ×𝐴 : (𝑎, 𝑏) ∈ 𝑅}.

Of course, the same is true for the category of additive relations AddRel . In fact, this symmetry of additive

relations has already been observed in [Mac61], making it one of the first appearances of dagger categories

(though the terminology “dagger category” was not yet used).

1
Technically, this is not a span but an equivalence class of spans. For convenience we suppress this from the notation.
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4.2 The Bicategory of Spans

The fact that the morphisms in Span
1
(C) as defined in Definition 4.1.1 are equivalence classes of spans

instead of actual spans suggests that spans carry additional structure that is not fully captured by the

notion of a category.

This becomes especially obvious when noting that a span in C is equivalently described as a functor

from the preorder category • ← • → • to C. A span from 𝐴 to 𝐵 is then a functor (• ← • → •) → C,
mapping the leftmost point to 𝐴 and the rightmost point to 𝐵. This may also be described as the limit of

the diagram

• Mor(C) Mor(C) •

C C C

𝐴 𝐶 𝐷 𝐷 𝐶 𝐵

in Cat , where Mor(C) = [• → •, C] is the arrow category and 𝐷 and 𝐶 denote the domain and codomain

functor, respectively. Indeed, this category is just the category of cones of the functor

𝐻 : {•, ∗} → C, • ↦→ 𝐴, ∗ ↦→ 𝐵

and the terminal object of this category (if existent) is by definition the product 𝐴 × 𝐵.
This description as functors makes it apparent that the collection of spans from𝐴 to 𝐵 is really a (functor)

category.

Definition 4.2.1. Let C be a category and𝐴, 𝐵 ∈ C be two objects. The spans from𝐴 to 𝐵 form a category

Span (C)(𝐴, 𝐵) (also denoted by just Span (𝐴, 𝐵)). Its objects are spans from 𝐴 to 𝐵

𝐴 𝑋 𝐵
𝑓 𝑔

and a morphism in Span (𝐴, 𝐵) is a morphism 𝜙 in C making the diagram

𝑋

𝐴 𝐵

𝑋 ′

𝑓 𝑔

𝜙

𝑓 ′ 𝑔′

commute.

Remark 4.2.2. It is clear that this construction is also functorial in that for any functor 𝐹 : C → D and

objects 𝐴, 𝐵 ∈ C, we have a functor Span (C)(𝐴, 𝐵) → Span (D)(𝐹 (𝐴), 𝐹 (𝐵)), which simply applies 𝐹 to

each span and the morphisms between them.

Viewing the category Span (C)(𝐴, 𝐵) as the category of cones of 𝐻 (from above), this just amounts to

postcomposing 𝐻 by 𝐹 . ⃝

Example 4.2.3. Asmentioned in Example 4.1.2, any relation𝑅 ⊂ 𝐴×𝐵 gives rise to a span𝐴 𝑅 𝐵.

For two relations 𝑅 and 𝑅′, a morphism 𝜙 : 𝑅 → 𝑅′ is just an inclusion and the universal property of the

product states that 𝐴 × 𝐵 is the largest relation.

Remark 4.2.4. Viewing spans in C as functors (• ← • → •) → C, one may endow them with the

structure of a category by allowing arbitrary natural transformations between them; i.e. by studying

commutative diagrams

𝐴 𝑋 𝐵

𝐴′ 𝑋 ′ 𝐵′.
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Then one can view spans 𝐴 𝑋 𝐵
𝑓 𝑔

as another kind of morphism 𝐴 → 𝐵 (apart from the ordinary

morphisms 𝐴→ 𝐵 in C), leading to the weak double category of spans, see e.g. [GP17, Sec 5]. ⃝

We will now impose the structure of a bicategory on spans, essentially by combining Definition 4.1.1

and Definition 4.2.1. Making this precise requires some well-known properties of pullbacks, as can be

found in [Mac98, Exercise III.4.8].

Lemma 4.2.5 (Pullback Lemma). Let C be a category with pullbacks.

1. The pullback along the identity is the identity; i.e. the following diagram is a pullback

𝑋 𝑋

𝐴 𝐴.

𝑓

id𝑋

id𝐴

𝑓
⌟

2. Consider a commutative diagram

• • •

• • •

⌟

in C and assume that the right square is a pullback. Then the left square is a pullback if and only if

the outside rectangle is a pullback.

3. In particular, for the iterated pullback 𝑃 := (𝑋 ×𝐵 𝑌 ) ×𝑌 (𝑌 ×𝐶 𝑍 )

𝑃

𝑋 ×𝐵 𝑌 𝑌 ×𝐶 𝑍

𝑋 𝑌 𝑍

𝐴 𝐵 𝐶 𝐷,

⌟ ⌟

⌟

the left composite rectangle (spanned by the objects 𝑃 , 𝑌 ×𝐶 𝑍 , 𝐵 and 𝑋 ) is a pullback and the same

is true for the right composite triangle. Therefore, we obtain an isomorphism of spans

𝑋 ×𝐵 (𝑌 ×𝐶 𝑍 ) 𝑃 (𝑋 ×𝐵 𝑌 ) ×𝐶 𝑍 .� �

For example, in Set with the usual choice of pullbacks, the first part describes the isomorphism

𝐴 ×𝐴 𝑋 = {(𝑎, 𝑥) ∈ 𝐴 × 𝑋 : 𝑓 (𝑥) = 𝑎} → 𝑋, (𝑎, 𝑥) ↦→ 𝑥 .

The lemma asserts that taking pullbacks preserves identities and is associative up to isomorphism. Since

pullbacks are defined via universal property this is the best we can hope for. These isomorphisms describe

the weak associativity and unity in our bicategory of spans, which we can now define.

Definition 4.2.6. Let C be a category with pullbacks. The corresponding bicategory of spans Span (C)
(which for brevity will also be denoted by Span) consists of the following data:

1. The objects are the objects of C: Ob(Span) = Ob(C).

2. The category Span (𝐴, 𝐵) is the category from Definition 4.2.1.
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3. The identity 1-cell of 𝐴 ∈ C is the span 𝐴 𝐴 𝐴
id𝐴 id𝐴

.

4. The horizontal composition of spans is given by pullback as in Definition 4.1.1 (choosing a pullback

for each cospan).

5. The horizontal composition of 2-cells is defined by the universal property of the pullback 𝑋 ′ ×𝐵 𝑌 ′:

𝑋 ×𝐵 𝑌

𝑋 𝑌

𝐴 𝐵 𝐶

𝑋 ′ 𝑌 ′

𝑋 ′ ×𝐵 𝑌 ′.

𝜙 𝜓∃!

6. The left and right unitor are given by the canonical isomorphism from the chosen pullback𝐴×𝐴𝑋 to

𝑋 (which exists by Lemma 4.2.5). For instance, for the right unitor 𝜌 , the isomorphism 𝐴 ×𝐴 𝑋 → 𝑋

𝐴 ×𝐴 𝑋

𝐴 𝑋 𝑋

𝐴 𝐴 𝐵

id𝐴 id𝐴 𝑓 𝑔

id𝑋𝑓

�

is the component of the natural isomorphism 𝜌 , constituting an isomorphism(
𝐴 𝐴 ×𝐴 𝑋 𝑋 𝐵

𝑔
)
−→

(
𝐴 𝑋 𝐵

𝑓 𝑔
)

in Span (𝐴, 𝐵).

7. The components of the associator are given by the isomorphism from Lemma 4.2.5:

𝑋 ×𝐵 (𝑌 ×𝐶 𝑍 )

𝑌 ×𝐶 𝑍

𝑋 𝑌 𝑍

𝐴 𝐵 𝐶 𝐷

𝑋 𝑌 𝑍

𝑋 ×𝐵 𝑌

(𝑋 ×𝐵 𝑌 ) ×𝐶 𝑍 .

⌟

⌟

⌟

⌟

∃!
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By choosing the pullback of cospans of the form𝐴 𝐴 𝑋
id𝐴 𝑓

to be𝐴 𝑋 𝑋
𝑓 id𝑋

, one can make

the right unitor (and analogously the left unitor) the identity.

Of course, because composition is defined using pullbacks and thus is only unique up to isomorphism,

it is unreasonable to expect composition of spans to be strictly associative. However, it is still associative

up to canonical isomorphism, which is captured by its bicategory structure. It is also possible to construct

a version of this bicategory as a Segal object in Cat , as is demonstrated in [Ste20, Sec 3]. Further details on

the (∞,2)-categorical version of this bicategory can be found in [DK19, Cha 10] and [GR19, Cha 7].

Note that the category Span
1
from Definition 4.1.1 is the truncation of Span in that their objects are the

same but the morphisms in Span
1
are given by isomorphism classes of 1-cells in Span .

An important property of the span construction Span is that it is functorial in the sense that a pullback-

preserving functor 𝐹 : C → D induces a functor Span (C) → Span (D). This generalizes the functoriality
of its truncation Span

1
, which we observed in Definition 4.1.4.

Theorem 4.2.7 ([Joh+21, Prop 4.1.24]). The span construction of Definition 4.2.6 extends to a functor

Span : Catpb → Bicat , C ↦→ Span (C),

mapping a pullback-preserving functor 𝐹 : C → D to the functor Span (C) → Span (D) that “applies 𝐹 to

everything”. More precisely, it applies 𝐹 on objects and is given by Remark 4.2.2 on hom-categories:

Span (C)(𝐴, 𝐵) −→ Span (D)(𝐹 (𝐴), 𝐹 (𝐵)),

𝑋

𝐴 𝐵

𝑋 ′

𝑓 𝑔

𝜙

𝑓 ′ 𝑔′

↦−→

𝐹 (𝑋 )

𝐹 (𝐴) 𝐹 (𝐵)

𝐹 (𝑋 ′) .

𝐹 (𝑓 ) 𝐹 (𝑔)

𝐹 (𝜙 )

𝐹 (𝑓 ′ ) 𝐹 (𝑔′ )

[CKS84, Thm 4] identifies the image of this functor (up to equivalence), giving a characterization of the

bicategories which arise as the span bicategory of some category with pullbacks.

Intuitively, we may want to view the bicategory of spans Span (C) as a “symmetrized extension” of C. In
particular, it is beneficial to consider C as a subcategory of Span (C) by identifying a morphism 𝑓 : 𝐴→ 𝐵

with the span 𝐴 𝐴 𝐵
id𝐴 𝑓

. This idea is captured by the following inclusion functor.

Remark 4.2.8. Analogously to Remark 4.1.5, there is an inclusion 2-functor

𝜄 : C ↩→ Span (C), 𝐴 ↦→ 𝐴, (𝑓 : 𝐴→ 𝐵) ↦→
(
𝐴 𝐴 𝐵

id𝐴 𝑓
)
.

Here we view C as a 2-category as described in Example 2.2.2.

Due to the symmetric nature of Span , there also exists an inclusion functor for the opposite category

Cop ↩→ Span (C), 𝐴 ↦→ 𝐴, (𝑓 : 𝐴→ 𝐵) ↦→
(
𝐵 𝐴 𝐴

𝑓 id𝐴
)
. ⃝

Just like an ordinary category C has an opposite category Cop, any bicategory admits an opposite bi-

category.
2

Definition 4.2.9. The opposite bicategory Cop of a bicategory C consists of the same objects as C, the
same 2-cells and the direction of the 1-cells reversed; i.e.

Ob(Cop) := Ob(C), Cop(𝑋,𝑌 ) := C(𝑌,𝑋 ) .
2
In fact, a bicategory has additional notions of symmetry (e.g. by reversing the 2-cells), but this will not be relevant for us.
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The dagger category structure on the category of spans Span
1
(C) from Lemma 4.1.6 translates to the

following result for the bicategory of spans Span (C).

Lemma 4.2.10. Let C be a category with pullbacks. Then its bicategory of spans Span (C) admits a functor

Span (C) → Span (C)op

acting on objects and 2-cells as the identity and on 1-cells by “mirroring” them:(
𝐴 𝑋 𝐵

𝑓 𝑔
)
↦−→

(
𝐵 𝑋 𝐴

𝑔 𝑓
)
.

This functor is an involution; in particular Span (C) � Span (C)op.

A bicategory with this property is occasionally called a symmetric bicategory (e.g. in [MS06, Def 16.2.1]).

The inclusion functor Cop ↩→ Span (C) from Remark 4.2.8 is the composition of the inclusion functor

Cop ↩→ Span (C)op with this isomorphism Span (C)op � Span (C).

4.3 Construction of the extended Bicategory of Spans

We can finally construct the extended bicategory of spans from the ordinary bicategory of spans, as defined

in Definition 4.2.6. As mentioned, the idea is to formally replace the 2-cells in the bicategory of spans by

equivalence classes of spans:

𝑋

𝐴 𝐵

𝑌

{

𝑋

𝐴 𝑍 𝐵

𝑋 ′.

This is achieved by using the strict functor

Span
1
: Catpb → Cat , C ↦→ Span

1
(C)

from Definition 4.1.4 in order to change the enrichment of Span .

Lemma 4.3.1. The 2-category Catpb (from Definition 4.1.3) is a monoidal 2-subcategory of (Cat ,×, {∗}).

Proof. Because the terminal category {∗} has pullbacks, one has to check that products of categories,

functors and natural transformations in Catpb lie again in Catpb . But this is clear as a pullback in the product

category C × D is the same as a pullback in C and a pullback in D3
.

Since the components of the canonical 2-natural transformation

Span
1

(∏
𝑖∈𝐼
−
)
⇒

∏
𝑖∈𝐼

Span
1
(−)

are isomorphisms, Span
1
preserves products.

Lemma4.3.2. The 2-functor Span
1
: Catpb → Cat preserves products and thus becomes a cartesian changer.

We give a special name to changing the enrichment w.r.t. this functor.

3
The argument (when replacing binary products by arbitrary ones) even shows that Catpb is closed under arbitrary products

(not just finite ones).
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Definition 4.3.3. Changing the enrichment using Span
1
yields the spanification functor

Spanify : Catpb-Cat → Bicat .

By Example 2.5.7, we may view the category of (Catpb ,×, {∗})-enriched categories Catpb-Cat as a sub-

category of Bicat via the change of enrichment functor ChEn(−, 𝜄) : Catpb-Cat → Bicat induced by the

inclusion 𝜄 : Catpb ↩→ Cat . Because we want to apply the spanification functor Spanify : Catpb-Cat → Bicat
to the bicategory of spans Span , we have to check that it can be viewed as a Catpb-enriched category. More

precisely, this amounts to the following statement.

Lemma 4.3.4. The bicategory of spans (from Definition 4.2.6) is in the image of the change of enrichment

functor ChEn(−, 𝜄) : Catpb-Cat → Bicat .

Proof. Example 2.4.2 states that this translates to the following requirements for all 𝑋,𝑌 ∈ Ob(C):

C(𝑋,𝑌 ) ∈ Catpb , id
C
𝑋
∈ Catpb , • ∈ Catpb , 𝜆 ∈ Catpb , 𝜌 ∈ Catpb , 𝛼 ∈ Catpb .

That the hom-categories C(𝑋,𝑌 ) have pullbacks is the content of the following Lemma 4.3.5. A couple of

diagram chases confirm that •, 𝜆, 𝜌 and 𝛼 of Span lie in Catpb . We demonstrate the argument for 𝜌 ; that is,

we show that the right unitor

𝜌 : − •id𝐴
�

=⇒ idSpan (𝐴,𝐵)

has the property that all its naturality squares are pullback squares.

To that end, let 𝜙 : 𝑋 → 𝑌 be a morphism in Span (𝐴, 𝐵); i.e. a morphism in C making the diagram

𝑋

𝐴 𝐵

𝑌

𝑓 𝑔

𝜙

𝑓 ′ 𝑔′

commute. By the universal property of the pullback, this induces a morphism 𝐴 ×𝐴 𝑋 → 𝐴 ×𝐴 𝑌 and we

have to show that the dashed rectangle in the diagram

𝐴 ×𝐴 𝑋 𝐴 ×𝐴 𝑌

𝐴 𝑋 𝑋 𝐴 𝑌 𝑌

𝐴 𝐴 𝐵 𝐴 𝐴 𝐵

𝜌 𝜌

id𝐴 id𝐴

𝑓 id𝑋

𝜙

𝑓 𝑔
id𝐴 id𝐴

𝑓 ′ id𝑌

𝑓 ′ 𝑔′

is a pullback square. Indeed, focusing on the subdiagram

𝐴 ×𝐴 𝑋 𝐴 ×𝐴 𝑌 𝐴

𝑋 𝑌 𝐴,

𝜌 𝜌 id𝐴

𝜙 𝑓 ′

we observe that the right square and the outside rectangle are pullback diagrams, which yields the assertion

by Lemma 4.2.5.

Lemma 4.3.5. Let C be a category and 𝐴, 𝐵 ∈ C be two objects. If C has pullbacks, then the same is true

for the category of spans Span (𝐴, 𝐵) from 𝐴 to 𝐵.
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Proof. Consider the following diagram

𝑋 ×𝑍 𝑌

𝐴 𝐵

𝑋 𝑌

𝐴 𝐵 𝐴 𝐵

𝑍

𝐴 𝐵,

𝜋1 𝜋2

𝑓𝑋 𝑔𝑋

𝜙

𝑓𝑌 𝑔𝑌

𝜓

𝑓𝑍 𝑔𝑍

where the lower three spans and the lower two dashed morphisms are given. By definition of the pullback

and morphisms in C(𝐴, 𝐵), we have

𝑓𝑋 ◦ 𝜋1 = 𝑓𝑍 ◦ 𝜙 ◦ 𝜋1 = 𝑓𝑍 ◦𝜓 ◦ 𝜋2 = 𝑓𝑌 ◦ 𝜋2

and similarly

𝑔𝑋 ◦ 𝜋1 = 𝑔𝑍 ◦ 𝜙 ◦ 𝜋1 = 𝑔𝑍 ◦𝜓 ◦ 𝜋2 = 𝑔𝑌 ◦ 𝜋2.

These two morphisms form the legs of the span

𝐴 𝑋 ×𝑍 𝑌 𝐵,

which together with the canonical morphisms 𝜋1 : 𝑋 ×𝑍 𝑌 → 𝑋 , 𝜋2 : 𝑋 ×𝑍 𝑌 → 𝑌 is the pullback of 𝜙 and

𝜓 , as one can check.

Remark 4.3.6. Note that the category of spans Span (𝐴, 𝐵) generally does not have all limits, even if C
has all limits. For example, consider the category of nonempty sets Set \ {∅} and let 𝐴 = 𝐵 = {0, 1} be a
set consisting of two elements. Then the product of the two spans

{0, 1} {0} {0, 1}, {0, 1} {1} {0, 1}

does not exist, because there is no cone for these two spans. ⃝

Therefore, we may apply the spanification functor Spanify : Catpb-Cat → Bicat to the bicategory of

spans Span (C) (formally, to its preimage under ChEn(−, 𝜄) from Lemma 4.3.4). This produces the following

extended bicategory of spans.

Definition 4.3.7. Let C be a category with pullbacks. Its extended bicategory of spans Spanext (C)
(which for brevity is also denoted by Spanext ) is the following bicategory:

1. The objects are the objects of C: Ob(Spanext ) = Ob(C).

2. The category Span (𝐴, 𝐵) has as objects spans of the form

𝐴 𝑋 𝐵.
𝑓 𝑔

A morphism (
𝐴 𝑋 𝐵

𝑓 𝑔
)
−→

(
𝐴 𝑋 ′ 𝐵

𝑓 ′ 𝑔′
)
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is an equivalence class of spans 𝑋 𝑍 𝑋 ′ (w.r.t. the equivalence relation from Defini-

tion 4.1.1) making the diagram

𝑋

𝐴 𝑍 𝐵

𝑋 ′

𝑓 𝑔

𝑓 ′ 𝑔′

commute. By construction, 𝑍 is also equipped with a span 𝐴 𝑍 𝐵, but these two mor-

phisms are already determined by the rest of the data. Composition is given by pullback and the

identity 2-cell is the span 𝑋 𝑋 𝑋
id𝑋 id𝑋

.

3. The identity 1-cell of 𝐴 ∈ C is the span 𝐴 𝐴 𝐴
id𝐴 id𝐴

.

4. The horizontal composition of 1-cells is given by pullback as in Definition 4.1.1.

5. The horizontal composition of 2-cells is

𝑋 ×𝐵 𝑌

𝑋 𝑌

𝐴 𝑊 𝐵 𝑍 𝐶

𝑋 ′ 𝑌 ′

𝑋 ′ ×𝐵 𝑌 ′.

𝑊 ×𝐵𝑍

6. The unitors and the associator are obtained by applying Span
1
to the corresponding data of Span .

Remark 4.3.8. Roughly, the main difference between the extended bicategory of spans Spanext (C) (Defini-
tion 4.3.7) and the bicategory of spans Span (C) (Definition 4.2.6) is that the former has equivalence classes

of spans as 2-cells instead of ordinary morphisms of C. ⃝

As a consequence of this formal construction of the extended bicategory of spans via change of enrich-

ment, we obtain a number of functoriality results from the functoriality of changing the enrichment. We

summarize some of these results in the theorem after the subsequent lemma.

Lemma 4.3.9. The image of the span functor Span : Catpb → Bicat from Theorem 4.2.7 lies in Catpb-Cat ,
so we may view Span as a functor Span : Catpb → Catpb-Cat .

Proof. On objects, this is exactly the content of Lemma 4.3.4. For a morphism 𝐹 : C → D, Example 2.5.7

states that we have to show

Span (𝐹 ) (𝑋,𝑌 ) ∈ Catpb ∀𝑋,𝑌 ∈ Ob(C), Span (𝐹 )id ∈ Catpb , Span (𝐹 )• ∈ Catpb .

That Span (𝐹 ) (𝑋,𝑌 ) preserves pullbacks is a consequence of the concrete form of the pullbacks in the span

category, as described in Lemma 4.3.5 and the fact that Span (𝐹 ) (𝑋,𝑌 ) : Span (𝑋,𝑌 ) → Span (𝐹 (𝑋 ), 𝐹 (𝑌 ))
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just applies 𝐹 to the spans. Because Span (𝐹 )id is an identity 2-cell, the second statement is clear. Finally,

the third claim amounts to the statement that the dashed rectangle in

𝐹 (𝑋 ) ×𝐹 (𝐵) 𝐹 (𝑌 ) 𝐹 (𝑋 ′) ×𝐹 (𝐵) 𝐹 (𝑌 ′)

𝐹 (𝑋 ×𝐵 𝑌 ) 𝐹 (𝑋 ′ ×𝐵 𝑌 ′)

𝐹 (𝑋 ) 𝐹 (𝑌 ) 𝐹 (𝑋 ′) 𝐹 (𝑌 ′)

𝐹 (𝐴) 𝐹 (𝐵) 𝐹 (𝐶)

𝐹 (𝑋 ′) 𝐹 (𝑌 ′)

is a pullback, where 𝑋 → 𝑋 ′, 𝑌 → 𝑌 ′ are two morphisms in C. A pair of morphisms

𝑇 → 𝐹 (𝑋 ′) ×𝐹 (𝐵) 𝐹 (𝑌 ′), 𝑇 → 𝐹 (𝑋 ×𝐵 𝑌 )

making the square into 𝐹 (𝑋 ′×𝐵𝑌 ′) commute is, by the universal property of the pullback 𝐹 (𝑋 ′)×𝐹 (𝐵)𝐹 (𝑌 ′),
the same data as two morphisms 𝑇 → 𝐹 (𝑋 ′), 𝑇 → 𝐹 (𝑌 ′) making the square into 𝐹 (𝐵) commute. This

corresponds exactly to a morphism 𝑇 → 𝐹 (𝑋 ′) ×𝐹 (𝐵) 𝑋 (𝑌 ′).

Theorem 4.3.10. The extended bicategory of spans Spanext from Definition 4.3.7 has the following prop-

erties:

1. The extended bicategory of spans construction Spanext (C) is functorial in the input category C; i.e.
it extends to a functor

Spanext : Catpb → Bicat .

2. There is a natural transformation

Catpb-Cat Bicat

(−)0

Spanify

from the underlying bicategory functor to the spanification functor. Its components C � C0 →
Spanify(C) are strict functors that are the identity on objects and are given by Remark 4.1.5 on

hom-categories C(𝐴, 𝐵) → Span
1
(C(𝐴, 𝐵)):

𝐴 𝐵

𝑓

𝑔

𝛼 ↦−→ 𝐴 𝐵.

𝑓

𝑔

𝑓

id𝑓

𝛼

Precomposing the natural transformation with Span : Catpb → Catpb-Cat yields a natural transfor-

mation Span ⇒ Spanext with components (where the morphisms 𝑓1 and 𝑓2 in the middle are usually

not drawn as they are determined by the rest of the data)

𝑋

𝐴 𝐵

𝑌

𝑓1 𝑓2

𝛼

𝑔1 𝑔2

↦−→

𝑋

𝐴 𝑋 𝐵

𝑌 .

𝑓1 𝑓2
id𝑋

𝑓1 𝑓2

𝛼
𝑔1 𝑔2
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3. There is an involution functor Spanext (C) → Spanext (C)op fixing objects and 2-cells and “mirroring”

the 1-cells: (
𝐴 𝑋 𝐵

𝑓 𝑔
)
↦−→

(
𝐵 𝑋 𝐴

𝑔 𝑓
)
.

Proof. 1. Lemma 4.3.9 shows that the span functor Span : Catpb → Bicat from Theorem 4.2.7 factors as

Catpb → Catpb-Cat → Bicat

and composing the functor Catpb → Catpb-Cat with the spanification functor Spanify : Catpb-Cat →
Bicat yields the desired functor Spanext : Catpb → Bicat .

2. This follows by combining Theorem 3.2.5 with the definition of Span
1
(Definition 4.1.4).

3. By functoriality of changing the enrichment, the functor Span (C) → Span (C)op from Lemma 4.2.10

induces a functor Spanext (C) → ChEn

(
Span (C)op, Span

1

)
, which is the desired functor when com-

posed with the canonical isomorphism

ChEn

(
Span (C)op, Span

1

)
� ChEn

(
Span (C), Span

1

)
op

= Spanext (C)op.

Remark 4.3.11. We give some interpretations regarding the significance of Theorem 4.3.10.

1. Intuitively, the natural transformation Span ⇒ Spanext exhibits Spanext as an “extension” of the bicat-

egory Span .

2. The involution functor Spanext (C) → Spanext (C)op captures the obvious symmetry of Spanext (C) that
is shared with Span (C), since they only differ in their 2-cells.

3. For the same reason, the functor 𝜄 : C ↩→ Span (C) from Remark 4.2.8 can be composed with the

inclusion Span (C) ↩→ Spanext (C) to obtain an inclusion functor C ↩→ Spanext (C). It describes the
obvious fact that C also “sits inside” the extended bicategory Spanext (C).
This can also be observed in a more abstract context. 𝜄 constitutes the components of a natural

transformation from the inclusion functor 𝐼 : Catpb ↩→ Catpb-Cat (viewing an ordinary category as

a bicategory with trivial 2-cells) to Span . Composing this with the natural transformation Span ⇒
Spanext from Theorem 4.3.10 yields a natural transformation 𝐼 ⇒ Spanext whose components are the

inclusion functor C ↩→ Spanext (C). ⃝

The above illustrates how various properties of the extended bicategory of spans Spanext (C) can be

formally deduced from those of the bicategory of spans Span (C), using the fact that the former arises from

the latter by change of enrichment. This exemplifies how change of enrichment can shed light on the

relationship between these two bicategories.
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