
Algorithmic Game Theory

Lecture Notes

based on a lecture by Prof. F. Brandt

Marvin Jahn

mail@marvin-jahn.de

July 26, 2021

mailto:mail@marvin-jahn.de


Contents

Contents

1 Preference Relations and Lotteries 1

2 Solution Concepts of Normal-Form Games 3
2.1 Normal-Form Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Iterated Dominance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Maximin Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Nash Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.5 Correlated Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Cooperative Game Theory 10

4 Stable Matchings 13

5 Refinements of Nash Equilibria 15
5.1 Trembling-hand perfect Equilibria . . . . . . . . . . . . . . . . . . . . . . 15
5.2 Strong Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.3 Coalition-proof Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.4 Quasi-strict Equilibria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

6 Zero-Sum Games 17

7 Succinct Games and Commitments 20
7.1 Anonymous Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.2 Symmetric Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
7.3 Graphical Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
7.4 Stackelberg Games . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

8 Extensive-Form Games 22

These are (unofficial) lecture notes for the lecture Algorithmic Game Theory held by Prof.
F. Brandt at the Technical University Munich in the summer semester 2021.

Some proofs, many examples and some complexity-theoretic results (hardness results)
are omitted.



1 Preference Relations and Lotteries 1

1 Preference Relations and Lotteries
Lec 1
2021-04-13We start with the following informal definition.

Definition 1.1. An agent A is an entity in game theory able to make decisions. The
set of possible decisions the agent can make is denoted by A(A).

The preferences of an agent between the different alternatives is modeled by preference
relations.

Definition 1.2. The (binary) preference relation on the set of alternatives A of some
agent is a binary relation, where x ≥ y is interpreted to mean that the agent preferes x
over y.

Note that any binary relation can be decomposed into a asymmetric relation and
a symmetric relation:

B = {(x, y) ∈ B : (y, x) ̸∈ B} ⊔ {(x, y) ∈ B : (y, x) ∈ B}.

In the case of preference relations, the asymmetric part corresponds to strict preference
and the symmetric part corresponds to indifference.
In the following, we write ≤ for the preference relation, < for its asymmetric part and ∼
for its symmetric part.

Definition 1.3. A preference relation is called rational if it is a complete preorder (i.e.
transitive and complete).

Lemma 1.4. A transitive relation on a nonempty finite set S admits a maximal element.

Proof. This is equivalent to the fact that there is no infinite path in a finite directed
graph.
Alternatively: Take an arbitrary x0 ∈ S and form a chain x0 ≤ x1 ≤ · · · ≤ xn, such that
there is no xn+1 ∈ S \ {x0, . . . , xn} with xn ≤ xn+1. Then xn is a maximal element.

Another way to represent the preferences of an agent are utility functions.

Definition 1.5. A utility function is a function u : A → R, where u(x) ≥ u(y) is
interpreted to mean that the agent prefers x over y.

Given a utility function u : A → R, the corresponding preference relation is given by

x ≤ y :⇐⇒ u(x) ≤ u(y).

On the other hand, a given preference relation may correspond to no or many utility
functions, since given a corresponding utility function u, we can derive many others by
composition f ◦ u with some strictly increasing function f : R→ R.

Proposition 1.6. If the set A of alternatives is countable, then a preference relation ≤
permits a corresponding utility function if and only if ≤ is rational.
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Proof. Clearly ≤ must be rational, because (R,≤) is a totally ordered set.
On the other hand, suppose that ≤ is rational. The equivalence relation

x ∼ y :⇐⇒ x ≤ y ∧ y ≤ x

on A is compatible with ≤, so ≤ descends to A/ ∼. By construction, ≤ becomes a total
order on A/ ∼. Thus there is a countable chain containing all elements of A/ ∼, which
can be identified in an order-preserving way with a subset of Z; i.e. there exists an order-
preserving map ϕ : A/ ∼→ Z. Writing π : A ↠ A/ ∼ for the projection and i : Z ↪→ R

for the inclusion, a utility function of ≤ is given by the composition ψ : i ◦ϕ ◦π : A → R.

Example 1.7. The lexicographical ordering on [0,∞)× [0,∞) cannot be represented by
a utility function.

Lec 2
2021-04-20In the real world, the consequences of actions are often best described using proba-

bilities. Instead of knowing that a certain alternative a ∈ A will happen if we make some
decision, we usually only know that it increases the probability that a occurs. Thus we
need to generalize our notion of alternatives.

Definition 1.8. A (simple) lottery is a probability distribution over the set of alter-
natives A. If A = {a1, . . . , an} is finite, it can be represented as a probability vector
p ∈ Rn. A lottery is often also written as [p1 : a1, . . . , pn : an].
The set of all lotteries over a finite set of alternatives A = {a1, . . . , an} is thus the set of
all probability distributions over A, denoted by

L(a1, . . . , an) = {p ∈ Rn probability vector}.

For convenience, lotteries may instead be a probability distribution on the set of all simple
lotteries L. Such a lottery is called compound lottery. By multiplying probabilities, a
compound lottery can be translated into a simple one.
On the other hand, every alternative a ∈ A gives rise to a canonical lottery [a : 1] (also
usually denoted by a), called degenerate lottery.
Therefore, the notions of simple lottery and compound lottery are equivalent.

In other words, any lottery makes A into a probability space and u : A → R is a
random variable.
Whenever randomness is involved, instead of having a preference on the alternatives A,
an agent should have a preference on the set of lotteries L. Thus we extend Definition
1.2 as follows.

Definition 1.9. A (binary) preference relation on the set of lotteries L of some agent
is a binary relation. It is called rational if it constitutes a complete preorder.

Given the preference relation of some agent on A, it is not clear how to construct a
preference relation on L from that. For example, the agent might prefer the lottery for
which the most likely outcome is preferred to the others.

To judge which preference relations are “good”, we need to introduce additional ter-
minology.

Definition 1.10. A preference relation ≥ on lotteries is called continuous, if for all
L1, L2, L3 ∈ L, L1 > L2 > L3, there is some ϵ ∈ (0, 1), such that

[(1− ϵ) : L1, ϵ : L3] > L2 > [(1− ϵ) : L3, ϵ : L1].
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Definition 1.11. A preference relation ≥ on lotteries is called independent, if for all
L1, L2, L3 ∈ L and p ∈ (0, 1), we have

L1 ≥ L2 ⇐⇒ [p : L1, (1− p) : L3] ≥ [p : L2, (1− p) : L3].

Von Neumann and Morgenstern showed the following advanced theorem in 1947.

Theorem 1.12. Let A be a set of alternatives and L the set of lotteries. A preference
relation ≥ on L is rational, continuous and independent if and only if there exists a
utility function u : A → R, such that for any two lotteries L1 = [p1 : x1, . . . , pn : xn] and
L2 = [q1 : x1, . . . , qn : xn], we have

L1 ≥ L2 ⇐⇒
n∑

i=1

piu(xi) ≥
n∑

i=1

qiu(xi).

Such a utility function u is called vNM.

Note that the composition f ◦u of any vNM utility function u with any positive affine
transformation f(x) = ax+ b, a > 0 is another vNM utility function.

2 Solution Concepts of Normal-Form Games
Lec 3
2021-04-272.1 Normal-Form Games

We want to formally describe a large class of games.

Definition 2.1. A normal-form game is a finite set of players {1, . . . , n} together with
a finite set of actions Ai for each player and a utility (or payoff ) function u : A → Rn,
where A :=

∏n
i=1Ai is the set of action profiles. The utility function of a player i is simply

ui := πi ◦ u : A→ R. For an action a ∈ A, the vector ui(a) is called the outcome for that
action.
We write A−i := A1×· · ·×Ai−1×Ai+1×· · ·×An for the set of all actions from all players
but player i and similarly A−C for sets of players C.

In order to characterize which outcomes are optimal, an obvious strategy would be
to define a partial order on the set of all outcomes and consider its maximal elements.
One example for this is Pareto-dominance, which compares outcomes by their “social”
impact.

Definition 2.2. As a subset of Rn the set of outcomes inherits a partial order (i.e.
component-wise comparison). An outcome is called (strongly) Pareto-optimal if it is
a maximal element with respect to this order and (weakly) Pareto-dominated other-
wise.
In other words, it is Pareto-dominated, if there exists another outcome in which all
players obtain at least as much utility and one player increases their utility. It is called
strongly Pareto-dominated, if there exists another outcome in which all players in-
crease their utility; otherwise it is called weakly Pareto-optimal.

Clearly, a strongly Pareto-dominated outcome is also weakly Pareto-dominated and
any strongly Pareto-optimal outcome is also weakly Pareto-optimal.
If an outcome is Pareto-optimal, it is impossible to increase the utility of a player without
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reducing the utility of another. Of course, these notions do not change when using an
equivalent utility function. Any finite game must contain a Pareto-optimal outcome.
Pareto properties only deal with the outcomes, not actions. In particular, they say noth-
ing about strategies, since they completely ignore the actions of the players.

Instead of looking at the “global” welfare, we now want to focus on a single player i
and determine which of their actions are better than others.

Definition 2.3. For a player i, we have the function Ai → (A−i → R), assigning to each
possible action the function returning the resulting utility of i. Therefore, in order to
specify a relation (in particular, a partial order) on Ai, it is enough to define one on the
set {A−i → R}. We can view {A−i → R} as a product and thus get a product order
≤. An action ai ∈ Ai very weakly dominates bi ∈ Ai, if ai ≥ bi with respect to the
induced partial order and it weakly dominates bi ∈ Ai, if ai > bi with respect to the
asymmetric part of the induced partial order. We may also use the asymmetric part of
the product order to induce an asymmetric order on Ai. We say that ai ∈ Ai (strictly)
dominates bi ∈ Ai, if ai > bi with respect to the induced asymmetric order.
It is called (...) dominant, if it is a greatest element and it is called (...) dominated,
if it is no maximal element with respect to one of the previously defined relations.
The outcome that arises when all players pick a dominant action (assuming such actions
exist) is called dominant strategy outcome.

Definition 2.4. A mixed strategy si ∈ Si := L(Ai) is a lottery (probability distribu-
tion) over actions. The action ai is played with probability si(ai).
A degenerate lottery is just an action and is called pure strategy.
For a given strategy profile s ∈ S = S1 × · · · × Sn, the set of action profiles A becomes a
probability space and ui : A→ R becomes a random variable. The expected utility of
player i in a given strategy profile s ∈ S = S1 × · · · × Sn is the expected value of ui; that
is,

ui(s) := E[ui] =
∑
a∈A

ui(a)
n∏

j=1

sj(aj).

We will always assume that our utility functions are vNM, so that we may assume
that the agents want to maximize their expected payoff.

For any player i, the set of their strategies Si is by definition the convex hull of
Ai. In particular, we can form convex combinations of the strategies. For strategies
s1, . . . , sl ∈ Si and a probability vector x ∈ Rl, we write

∑l
i=1 xisi for their convex

combination {x1 : s1, . . . , xl : sl}.

Lemma 2.5. In any normal-form game with n players and for any player i, the function

u : Si × S−i → Rn

is “linear” in Si; that is, for any si, ti ∈ Si we have

p · u(si,−) + (1− p) · u(ti,−) = u(psi + (1− p)ti,−).

Equivalently, we have

p · uj(si,−) + (1− p) · uj(ti,−) = uj(psi + (1− p)ti,−)

for all players i, j and any si, ti ∈ Si.
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Proof. Since ui = πi ◦ u, the claimed equivalence is clear. Because for s−i ∈ S−i, we have

uj(si, s−i) =
∑
a∈A

uj(a)si(ai)
∏

k∈{1,...,n}\{i}

sk(ak)

=
∑

a−i∈A−i

 ∏
k∈{1,...,n}\{i}

sk(ak)

 ∑
ai∈Ai

uj(ai, a−i)si(ai),

and conclude

p · uj(si, s−i) + (1− p) · uj(ti, s−i)

=
∑

a−i∈A−i

 ∏
k∈{1,...,n}\{i}

sk(ak)

 ∑
ai∈Ai

uj(ai, a−i)(p · si(ai) + (1− p) · ti(ai))

=
∑

a−i∈A−i

 ∏
k∈{1,...,n}\{i}

sk(ak)

 ∑
ai∈Ai

uj(ai, a−i)(psi + (1− p)ti)(ai)

= uj(psi + (1− p)ti, s−i).

Of course, the lemma implies the statement for any (finite) probability vector x instead
of just for x = (p, 1− p) ∈ R2.

Our notions of dominance from Definition 2.3 directly extend from actions to mixed
strategies. It is important to realize that when checking our various notions of dominance
for strategies, it is enough to consider pure strategies of the opponents, as the following
lemma shows.

Lemma 2.6. Let si and ti be two strategies of player i. Then si dominates ti if and only
if ui(si, a−i) > ui(ti, a−i) for all a−i ∈ A−i.
The analogous statement is true for weak and very weak dominance.

Proof. We only have to show that if ui(si, a−i) > ui(ti, a−i) for all a−i ∈ A−i, then
ui(si, s−i) > ui(ti, s−i) for all s−i ∈ S−i. Because

ui(si, a−i) =
∑
ai∈Ai

ui(ai, a−i)si(ai),

it follows

ui(si, s−i) =
∑
a∈A

ui(a)
n∏

j=1

sj(aj)

=
∑

a−i∈A−i

 ∏
j∈{1,...,n}\{i}

sj(aj)

 ∑
ai∈Ai

ui(ai, a−i)si(ai)

>
∑

a−i∈A−i

 ∏
j∈{1,...,n}\{i}

sj(aj)

 ∑
ai∈Ai

ui(ai, a−i)ti(ai)

=
∑
a∈A

ui(a)si(ai)
∏

j∈{1,...,n}\{i}

sj(aj) = ui(ti, s−i).

The same argument works for weak and very weak dominance.
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Definition 2.7. A strategy si is called best response to the strategy profile s−i, if
ui(si, s−i) ≥ u(ti, s−i) for all ti ∈ Si. The set of all best responses is denoted by Bi(s−i).

Notice that any convex combination of best responses is another best response and
that there always exists a best response that is a pure strategy.

Theorem 2.8. If a strategy si is dominated, then it is never a best response. Further-
more, the other direction is true for two-player game.

We also make the following (inprecise) definition.

Definition 2.9. An action is called rationalizable if a rational player could justifiably
play it against rational opponents when everyone knows that everyone plays rationally.

Intuitively, a rational player should never play dominated actions. This intuition
agrees with the previous definition, as Pearce and Bernheim separately showed in 1984.

Theorem 2.10. In two-player games, rationalizable actions are precisely those actions
that survive the iterated elimination of dominated actions.

Of course, every game has one or more rationalizable action.

We note an alternative characterization of dominated and weakly dominated actions.

Theorem 2.11. (a) An action is dominated if and only if it is never a best response.

(b) An action is weakly dominated if and only if it is never a best response to a full-
support strategy.

2.2 Iterated Dominance
Lec 4
2021-05-04Definition 2.12. A game can be solved via iterated strict dominance (ISD), if

only a single action profile survives the iterated elimination of dominated actions.
It can be solved via iterated weak dominance (IWD), if only a single action profile
survives the iterated elimination of weakly dominated actions.

A two-player game can be solved via iterated strict dominance if and only if both
players only have a single rationalizable action.

Note that ISD is order independent and its solution (if existent) is unique, whereas
IWD is order dependent and may have multiple solutions.

Theorem 2.13. Deciding whether a game can be solved via ISD is computable in polyno-
mial time (using a linear program), whereas deciding the same for IWD is NP-complete.

We make the following informal definition.

Definition 2.14. A solution concept is a function mapping a game to a (possibly
empty) set of strategy profiles. These strategy profiles are the ones recommended by the
solution concept.

It is reasonable to assume that a solution concept should be invariant under positive
affine transformations.

Example 2.15. ISD and IWD are solution concepts.
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2.3 Maximin Strategies

Definition 2.16. The set of maximin stategies of player i is given by

argmaxsi∈Si
min

s−i∈S−i

ui(si, s−i).

The security level of player i is the corresponding maximum

max
si∈Si

min
s−i∈S−i

ui(si, s−i).

It is the highest utility player i can achieve, no matter what the other players do.

This strategy tries to maximize the worst-case outcome of the game. It again suffices
to consider pure strategies of the opponents, as the following lemma shows.

Lemma 2.17. The set of maximin strategies of player i is

argmaxsi∈Si
min

a−i∈A−i

ui(si, a−i).

Proof. We have to show that mins−i∈S−i
ui(si, s−i) = mina−i∈A−i

ui(si, a−i) for all si ∈ Si.
The inequality “≥” holds by definition. For the other inequality, let t−i ∈ S−i be a
strategy profile attaining the minimum. For any player j ̸= i, we may consider a game
with modified payoffs. Namely, j’s payoff for the action profile a ∈ A is defined to be
−ui(a). Because

tj ∈ argminsj∈Sj
ui(si, sj, t−{i,j}) = argmaxsj∈Sj

−ui(si, sj, t−{i,j}),

it follows that tj is a best response to si ∪ t−{i,j} in the modified game and thus tj
can be chosen to be pure. Hence, tj can be replaced by a pure strategy aj that sat-
isfies ui(si, aj, t−{i,j}) = ui(si, sj, t−{i,j}), so aj ∪ t−{i,j} ∈ S−i still attains the minimum
mins−i∈S−i

ui(si, s−i). By iterating this argument, we can construct a collection of pure
strategies a−i ∈ A−i that attains the minimum and thus the claim follows.

Lemma 2.18. Convex combinations of maximin strategies are again maximin strategies.

Proof. This is a direct consequence of Lemma 2.5, since for si =
∑

ai∈Ai
si(ai)ai and

ti =
∑

ai∈Ai
ti(ai)ai two maximin strategies with security level c, we have

min
s−i∈S−i

ui(psi + (1− p)ti, s−i) = p · min
s−i∈S−i

ui(si, s−i) + (1− p) · min
s−i∈S−i

ui(ti, s−i) = c.

Theorem 2.19. Using a linear program, maximin strategies and the corresponding se-
curity levels can be computed in polynomial time.

2.4 Nash Equilibria

Definition 2.20. A strategy profile s = (s1, . . . , sn) is a Nash equilibrium if for all
players i and all strategies ti ∈ Si, we have

ui(si, s−i) ≥ ui(ti, s−i).

A pure Nash equilibrium is a Nash equilibrium consisting only of pure strategies.
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Intuitively, a Nash equilibrium can be thought of as a steady state of mutual best
responses. Equivalently, every strategy si is a best response to the strategies of all others.
Unlike for maximin strategies, the set of Nash equilibria is generally not convex. Lec 5

2021-05-11
Lemma 2.21 (Indifference principle). A strategy profile s is a Nash equilibrium if
and only if for every player i the following holds true, assuming that the other players
play s−i:

(a) All actions in the support of si yield the same expected payoff.

(b) No action outside the support of si yields more expected payoff.

In particular, any randomization of player i among actions in the support of si yield
the same expected payoff. Informally, one could describe this as “a player randomizes for
the other players”; if they change their randomization, then the best response of other
players might change.
The indifference principle is convenient for determining Nash equilibria.

Proposition 2.22. The following two statements hold for any normal-form game.

(a) Only rationalizable actions can be in the support of an equilibrium.

(b) The payoff in any equilibrium is always at least as large as the player’s security
level.

Proof. (a) An action that is not rationalizable is never a best response.

(b) If there was a player for which the payoff in an equilibrium was strictly less than
the player’s security level, then that player could just play their maximin strategy
in order to achieve a higher payoff.

Nash equilibria always exist, which was shown by Nash in 1950.

Theorem 2.23 (Existence of Nash equilibria). Every normal-form game contains a
Nash equilibrium.

Lec 6
2021-05-18We define three axioms that uniquely characterize Nash equilibria.

Definition 2.24. A solution concept may satisfy some of the following axioms:

(a) Utility maximization: In a one player game, only expected utility-maximizing
strategies are chosen.

(b) Consistency: For a n-player game let s be the solution of the solution concept. For
any k ∈ {1, . . . , n}, fixing the strategy of k of the players to the ones recommended
by the solution concept gives rise to a (n − k)-player game. Then the remaining
strategies from s should be a solution of this (n − k)-player game with respect to
the solution concept.

(c) Existence: Every game has at least one solution.

Norde et al. showed in 1996:
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Theorem 2.25. The Nash equilibrium is the only solution concept that (simultaneously)
satisfies utility maximization, consistency and existence.

While the proof of that theorem is rather involved, the following weaker statement is
surprisingly simple to prove.

Theorem 2.26. A solution concept that satisfies utility maximization and consistency
maps a game to a subset of the set of Nash equilibria of that game. In other words, any
solution returned by such a solution concept is necessarily a Nash equilibrium.

We now study the question if and how one can efficiently calculate Nash equilibria.
By simply checking each outcome, one can compute any pure Nash equilibrium in poly-
nomial time (in the size of the game), provided one exists.
However, the size of a normal-form game is exponential in the number of players, so while
the algorithm needs polynomial time, this is in terms of the size of the game, which is
exponential. Thus in that case more efficient representations of normal-form games are
required to handle large games efficiently.

Fictitious play is an algorithm used to find Nash equilibria. It was proposed by Brown
in 1951.

Definition 2.27. Given a game G, fictitious play is a “simulation” of the game in the
following way:

1. In the first round, every player arbitrarily chooses an action.

2. In subsequent rounds, each player simultaneously plays a pure best response to the
strategy profile given by the empirical distribution of their opponent in the previous
rounds.

Fictitious play can be understood as a learning procedure of two players. It is also
remarkable that in order to apply this method, each player only has to know their own
payoffs and not the payoffs of their opponents.

We summarize some statements of the convergence of fictitious play.

Theorem 2.28. If fictitious play converges, it converges to a Nash equilibrium.
In zero-sum games, 2× k games and games solvable by ISD, fictitious play converges.

Definition 2.29. A two-player game is called degenerate, if there exists a strategy
s−i ∈ S−i and a best response si ∈ Si to it, such that the best response has strictly larger
support than s; i.e. |supp(si)| > |supp(s−i)|.

Wilson showed the following theorem in 1971.

Theorem 2.30. In a non-degenerate two-player game, the number of Nash equilibria is
finite and odd.

In particular, in a non-degenerate game two-player game, all Nash equilibria must
have same sized support for both players.
But just because all Nash equilibria have the same size, we do not necessarily have a
non-degenerate game, as the following example shows.

Example 2.31. The game
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(1, 1) (1, 2)
(0, 0) (0, 0)

has a unique Nash equilibrium with outcome (1, 2), but any convex combination of the
rows is a best response to the second row.

Finding all Nash equlibria of a normal form game requires exponential time in the
worst case, because the number of Nash equilibria can be exponential in the number of
total actions.

A useful algorithm to determine a Nash equilibrium of a two-player game is the
support enumeration algorithm.

Theorem 2.32. The problem of finding a Nash equilibrium is PPAD-complete.

2.5 Correlated Equilibria

We mention a generalization of Nash equilibria.

Definition 2.33. A correlated strategy profile in a normal-form game is a probability
distribution p : A → [0, 1] over the action profiles. p is called a correlated equilibrium,
if for each player i and all actions ai, bi ∈ Ai, we have∑

a−i∈A−i

p(a−i, ai)ui(a−i, ai) ≥
∑

a−i∈A−i

p(a−i, ai)ui(a−i, bi).

In a correlated strategy profile, the probability distribution over the actions is not
necessarily given by a product distribution. It therefore assumes that the players com-
municate. It can be thought of as a situation where the players (e.g. leaders of different
nations) come together to decide on a strategy and then randomize together (e.g. one
lucky wheel that decides the action for all players) and then each player plays their as-
signed action.
If we think of a situation where the other players cannot check whether a player really has
played their assigned action or not, then the concept of correlated equilibrium becomes
quite intuitive. It simply states that no player has an incentive to play a different action
than the one assigned to them.

3 Cooperative Game Theory
Lec 7
2021-06-01So far, we have considered non-cooperative games, for which no binding agreements are

possible. Now we will consider cooperative game theory, in which binding agreements
can be made.

Definition 3.1. A cooperative game (in characteristic function form) is a finite
set of players N together with a characterstic function v : P(N) → R with v(∅) = 0.

The characterstic function represents the costs or payoffs that occur if a certain coali-
tion is formed.

Definition 3.2. A cooperative game (N, v) is called additive, if for any two disjoint
subsets S, T ⊂ N , we have

v(S ∪ T ) = v(S) + v(T ).
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Additive games are precisely those games where the total costs cannot be decreased
or increased by form a coalition, so no synergy effects are possible. Furthermore, the
characterstic function v in additive games is uniquely determined by its values on the
singletons. Thus, additive games can be represented as a vector in Rn with i-th entry
equal to v(i).

Definition 3.3. A cooperative game (N, v) is called convex, if for all sets of players
S ⊂ N , T ⊂ N , we have

v(S ∪ T ) ≥ v(S) + v(T )− v(S ∩ T ).

Intuitively, convex games are those where synergy effects by cooperation of the players
is always non-negative.

Lemma 3.4. Every additive cooperative game is convex.

Proof. If (N, v) is an additive cooperative game and S, T ⊂ N , then

v(S ∪ T ) + v(S ∩ T ) =
∑

i∈S∪T

v(i) +
∑

i∈S∩T

v(i)

=
∑
i∈S\T

v(i) +
∑
i∈T\S

v(i) + 2 ·
∑

i∈S∩T

v(i)

=
∑
i∈S

v(i) +
∑
i∈T

v(i) = v(S) + v(T ).

Definition 3.5. A cooperative game (N, v) is called superadditive, if for any two
disjoint subsets S, T ⊂ N , we have

v(S ∪ T ) ≥ v(S) + v(T ).

Intuitively, superadditive games are games for which the slogan

“The whole is more than the sum of its parts.”

applies. Most cooperative games occuring in reality are superadditive.

Lemma 3.6. Ever convex game is superadditive.

Proof. This follows since v(∅) = 0.

We conclude that for cooperative games, the following implications hold:

additive =⇒ convex =⇒ superadditive.

Note that even for additive games, a subset of a larger set can be assigned more payoff
than the larger set; e.g. N = {1, 2}, v({1}) = −1, v({2}) = 2, v({1, 2}) = 1.

Definition 3.7. A cooperative game (N, v) is called simple (or voting games), if
v : N → R only obtains the values 0 or 1. Furthermore, whenver v(S) = 1 for a subset
S ⊂ N , then v(T ) = 1 for all supersets T ⊃ S.
A player i ∈ N with v(S) = 0 for all S ⊂ N \ {i} is called vetoer. Equivalently, a player
i ∈ N is a vetoer if and only if v(N \ {s}) = 0.
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After coalitions have been formed, it still needs to be decided how to distribute the
costs or payoffs on the members of the coalition. This is what solution concepts model.
After a coalition has been formed, we may restrict the game to the set of players forming
the coalition and thus we may assume that the coalition consists of all players.

Definition 3.8. A solution concept of cooperative games is a function ϕ mapping a
cooperative game (N, v) to a cost/payoff vector ϕ(N, v) ∈ R|N |, whose i-th component
represents the costs/payoff of the i-th player.
Writing n := |N |, a payoff vector x ∈ Rn is called feasible, if

∑n
i=1 xi ≤ v(N). This

means that it does not distribute more payoff than is available.
A payoff vector x ∈ Rn is called efficient, if

∑n
i=1 xi = v(N).

It is called individually rational, if xi ≥ v({i}) for all i ∈ N ; i.e. no player obtains
more payoff by working alone instead of joining the coalition.

The core constitutes a “weaker form” of a solution concept. It roughly measures the
stability of a coalition; i.e. how likely the coalition is to break.

Definition 3.9. For a cooperative game (N, v), a payoff vector x ∈ Rn is in the core, if
it is efficient and

∑
i∈S xi ≥ v(S) for all S ⊂ N .

Note that the core as a solution of a set of linear inequalities is convex and it may
also be empty. If we ignore the games for which the core is empty and choose for each
other game a single vector in the core, the resulting “weaker form” of a solution concept
is individually rational.

Theorem 3.10. Every convex game has nonempty core.

Theorem 3.11. A simple game has nonempty core if and only if it has a vetoer.

Definition 3.12. In a cooperative game (N, v), the marginal contribution of player
i ∈ N to S ⊂ N is v(S ∪ {i})− v(S).

We now introduce terminology to describe “good” solution concepts of cooperative
games.

Definition 3.13. For each set of players N ⊂ N, the set of all characterstic functions
forms an abelian group.
A solution concept ϕ of cooperative games is called additive, if its components ϕ(N,−)
are a group homomorphism for each N ; i.e. if ϕ(N, v + v′) = ϕ(N, v) + ϕ(N, v′) for all
subsets N ⊂ N and characterstic functions v, v′ : P(N) → R.
A solution concept ϕ of cooperative games is called symmetric, if whenever v(S∪{i}) =
v(S ∪ {j}) for all S ⊂ N \ {i, j}, then ϕi(N, v) = ϕj(N, v). Intuitively, this means that if
two players are completely interchangeable, then a symmetric payoff function must assign
them the same payoff.
A solution concept ϕ of cooperative games satisfies nullity, if any player i ∈ N satisfying
v(S ∪ {i}) = v(S) for all S ⊂ N \ {i} receives zero payoff ϕi(N, v) = 0. In other words,
a player that does not increase the payoff of any coalition should get a payoff of 0.

Clearly, a solution concept satisfying all three of the defined axioms exists, since an
example is the zero function ϕ = 0. However, if one furthermore wants the solution
concept to be efficient, then there is only one such concept, as Shapley proved in 1953.



4 Stable Matchings 13

Theorem 3.14. There is a unique solution concept of cooperative games that is efficient,
additive, symmetric and satisfies nullity. It is called Shapley value.
Given a cooperative game (N, v), the payoff given to player i is

Shi(N, v) :=
∑

S⊂N,i̸∈S

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S))

=
1

n

∑
S⊂N,i̸∈S

1(
n−1
|S|

)(v(S ∪ {i})− v(S)).

In words, we consider all nonempty coalitions that i is not a part of and average the
marginal contribution of i to the coalition by the number of coalitions excluding i that
have this size. We then average over the number of players.

In Theorem 3.10 we saw that every convex game has a nonempty core. The following
theorem strengthens that result.

Theorem 3.15. In every convex game, the Shapley value lies within the core.

Theorem 3.16. In superadditive games, the Shapley value satisfies individual rationality.

4 Stable Matchings
Lec 8
2021-06-08Definition 4.1. A matching of two sets A,B is a subset of the cartesian product A×B.

We are only interested in the case that A denotes the set of agents. B may also be
the set of agents or a set of items. However, we don’t want “random” matchings, but
matchings that are compatible with the preferences of the agents.
A matching of agents with a set of “items” is called resource allocation, whereas a
matching between agents is called one-sided matching or two-sided matching, de-
pending on whether there are two different “types” of agents or not.

We first focus on two-sided matchings where one agent is assigned to a single other
(marriage setting).
Suppose we want to match a finite set W = {w1, . . . , wn} (women) with the finite set
M = {m1, . . . ,mn} (men), where each agent w ∈ W has preferences regarding the agents
in M and vice versa, which is given by a total order. We restrict ourselves to the case
that one agent is assigned to a single other (marriage), so a matching is just a bijection
µ : W →M .

Definition 4.2. A blocking pair for a matching µ : W →M in the marriage setting is
a tuple (wi,mj) ∈ W ×M , such that mj >wi

µ(wi) and wi >mj
µ(mj). Intuitively, this

means that both candidates prefer each other over their current partner.
A matching is called stable, if it does not have a blocking pair.

Whether there exists a blocking pair in a matching with n men and women can be
checked in polynomial time O(n2).

The following simple algorithm allows us to compute a stable matching.

Algorithm 4.3 (Gale-Shapley Algorithm (or Deferred Acceptance Algorithm)).
Start with an “empty matching” and iterate until there are no unengaged men:
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(a) Each man who does not have a temporary partner yet proposes to the woman he
prefers the most among the women who did not reject him yet.

(b) Each woman temporarily accepts the proposition of the man she prefers and rejects
all other propositions.

The usefuless of the algorithm lies in the following theorem, which was proven by Gale
and Shapley in 1962.

Theorem 4.4. Any marriage setting with n men and women permits a stable matching,
which can be constructed in polynomial time O(n2) using the Gale-Shapley Algorithm.

By interchanging the role of men and women in the algorithm, one can oftentimes
produce a different matching than the original one. In particular, stable matchings are
not unique. Therefore, it is useful to introduce some terminology in order to classify
different solutions to the stable marriage problem.

Definition 4.5. Consider the set S of stable matchings in a marriage setting. We may
define a partial order ≥M on S, where µ ≥M µ′ for stable matchings µ, µ′ ∈ S, if
µ(m) ≥m µ′(m) for all m ∈ M . The analogous definition for W gives us another partial
order ≥W .
A stable matching in the marriage setting isM-optimal (W -optimal), if it is a greatest
element with respect to≥M (≥W ); i.e. if every man (woman) weakly prefers this matching
to any other stable matching.

In particular, a M -optimal (W -optimal) matching is unique if it exists. In fact, it
always exists, as the following theorem shows.

Theorem 4.6. The matching resulting from the Gale Shapley Algorithm is the unique
M -optimal matching. In particular, by switching the role of M and W in the algorithm,
we obtain the unique W -optimal matching.

Proof. Let µ denote the matching obtained from the Gale Shapley Algorithm. Aiming
for contradiction, suppose that there is a stable matching µ∗ and m ∈ M , such that
µ∗(m) >m µ(m). By definition of the Gale Shapley Algorithm, a man proposes to his
preferred women first, so

µ∗(m) >m µ(m) ⇐⇒ µ∗(m) has rejected m ⇐⇒ ∃ m′ ∈M : m′ >µ∗(m) m.

Furthermore, since the algorithm consists of an iteration of propositions of men, there
must have been a first man m∗ ∈ M , who was rejected by µ∗(m∗); i.e. all other men
x ∈ M that proposed before him to µ∗(x) were accepted. Replacing m∗ by m, we may
assume that m has this property.
At the time in the algorithm when m is rejected, there must have been another man
m′ ∈ M that µ∗(m) preferred to m; i.e. m′ >µ∗(m) m. But this implies that m′ did
not propose to µ∗(m′) up to that point, because otherwise he would have been accepted.
Therefore µ∗(m) >m′ µ∗(m′) and (m′, µ∗(m)) ∈ M × W is a blocking pair, yielding a
contradiction.

Roth showed in 1982:

Theorem 4.7. The unique M -optimal matching is weakly Pareto-optimal for men; i.e.
there is no matching that every man strictly prefers to it.
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However, the M -optimal matching is “bad” for women:

Theorem 4.8. In the unique M -optimal matching, every woman is matched with the
worst partner she can have in any stable matching.

The result of the Gale Shapley Algorithm is not strategy-proof. In fact, there is no
mechanism that is both stable and strategy-proof.

We now focus on one sided matchings, where one agent is assigned to a single other
(roommate setting). Denote the set of agents by R := {r1, . . . , r2n}, where R is sup-
posed to be even and each agent r ∈ R has a total order over R \ {r}.
In this case, a matching is an involution µ : R → R (i.e. r ◦ r = idR) with no fixed points
(µ(r) ̸= r for all r ∈ R).

Definition 4.9. A blocking pair for a matching µ : R → R in the roommate setting is
a pair (r, r′) ∈ R2, such that r′ >r µ(r) and r >r′ µ(r

′).
A matching is called stable, if it does not have a blocking pair.

In contrast to the situation in the marriage setting, stable matchings in the roommate
setting do not always exist.

Theorem 4.10. In a roommate setting, we can use Irving’s Algorithm to determine if a
stable matching exists and if so, compute one, both in polynomial time.

The first step of the algorithm relies on the following lemma. A proof of the lemma
can be found in Irving’s paper An efficient algorithm for the ”stable roommates” problem
from 1985 (Lemma 1 and Corollary 1.1).

Lemma 4.11. Consider a roommate setting and two different candidates A and B. If B
is A’s favorite candidate of the ones that proposed to A in the first part of the algorithm,
then any stable matching must match A with a candidate that A likes at least as much
as B.

Stated differently, the lemma says that no partner in a stable matching can be worse
than the best proposal received.

5 Refinements of Nash Equilibria
Lec 9
2021-06-15In this section we highlight some refinements of Nash equilibria.

5.1 Trembling-hand perfect Equilibria

The idea is to only consider Nash equilibria that are not affected if a player slightly alters
their strategy (“trembling hand”).
In a game with N players and ni ∈ N actions for the player i, a strategy profile is a tuple
of probability vectors in

∏|N |
i=1R

ni , which can be identified with a closed subset of Rm,
where m :=

∑n
i=1 ni. We thus get a notion of convergence of strategy profiles.

Definition 5.1. A strategy profile s is called a trembling-hand perfect equilib-
rium, if there exists a sequence (s(n))n∈N of full-support strategy profiles s(n), such that

limn→∞ s(n) = s and si is a best response to s
(n)
−i for all n ∈ N, i ∈ N .
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Lemma 5.2. Any trembling-hand perfect equilibrium is a Nash equilibrium.

Proof. Let s be a trembling-hand perfect equilibrium with sequence (s(n))n∈N. We have
to show that for any player i, si is a best response to s−i. Because si is a best response to

s
(n)
−i , it follows ui(s

(m)
−i , si) ≥ ui(s

(m)
−i , s

′
i) for any other strategy profile s′i of i. Together with

the continuity of sums and products, we see that for any player i, si is a best response
to s−i:

ui(s) =
∑
a∈A

ui(a)
n∏

j=1

sj(aj)

= lim
m→∞

∑
a∈A

ui(a) · si(ai)
∏

j∈{1,...,n}\{i}

s
(m)
j (aj)

= lim
m→∞

ui(s
(m)
−i , si)

≥ lim
m→∞

ui(s
(m)
−i , s

′
i)

=
∑
a∈A

ui(a) · s′i(ai)
∏

j∈{1,...,n}\{i}

sj(aj) = ui(s−i, s
′).

Clearly, every full-support Nash equilibrium is trembling-hand perfect.

Theorem 5.3. In any game, trembling-hand perfect equilibria exist. The problem of
finding such equilibria is PPAD-complete.

5.2 Strong Equilibria

While ordinary Nash equilibria by definition ensure that a single individual has no moti-
vation to deviate from the proposed strategy, a strong equilibrium ensures that the same
holds true for any coalition of players.

Definition 5.4. A strong equilibrium of a game is a strategy profile s, such that for
any coalition of players C ⊂ N , there does not exist a strategy profile tC of the coalition,
such that ui(tC , s−C) > ui(s) for all i ∈ C.

Lemma 5.5. Any strong equilibrium yields a weakly Pareto optimal outcome.

Proof. Let s and t be two strategy profile, such that the outcome of t is strictly better
for a nonempty set of players C ⊂ N and equal for the rest. Then ui(tC , s−C) > ui(s) for
all i ∈ C, so s is not a strong equilibrium.

Every Nash equilibrium in a two-player zero-sum game is strong.
The main problem with strong equilbria is that there are many games for which they do
not exist.

5.3 Coalition-proof Equilibria

Coalition-proof equilibria generalize strong equilibria by only demanding that there are
no stable coalitions that have an incentive to deviate from the proposed strategy.
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Definition 5.6. A coalition-proof equilibrium of a game is a strategy profile s, such
that for any stable coalition of players C ⊂ N , there does not exist a strategy profile tC
of the coalition, such that ui(tC , s−C) > ui(s) for all i ∈ C.

By definition, every strong equilibrium is coalition-proof. Just like strong equilbria,
coalition-proof equilibria do not exist in many games.

5.4 Quasi-strict Equilibria

The idea of the quasi-strict equilibria is to ensure that every player will be motivated to
play their assigned strategy by getting strictly less payoff whenever they deviate.

Definition 5.7. A Nash equilibrium s is called quasi-strict equilibrium, if for any
player i and any ai ∈ supp(si), bi ̸∈ supp(si), we have ui(ai, s−i) > ui(bi, s−i).

In particular, any full-support Nash equilibrium is quasi-strict.

Theorem 5.8. Quasi-strict equilibria exist for all two-player games.

6 Zero-Sum Games

Definition 6.1. A two-player game is called a zero-sum game, if for every action profile
a ∈ A, we have u1(a) + u2(a) = 0.

Intuitively, zero-sum games are two-player games for which one player’s win is the
other ones loss and vice versa. Any outcome of a zero-sum game is necessarily weakly
Pareto optimal. They can be represented with a single matrix (by convention representing
u1).

Note that two player games for which the sum of the payoffs for both players are
constant (constant-sum games) are strategically equivalent to zero-sum games, as there
exists a positive affine transformation, which transforms one into the other. Most of our
solution concepts (e.g. Nash equilibria) are invariant under affine transformations.

A key observation for zero-sum games is that the payoff of a player should lie between
their security level and the negative of their opponent’s security level. That these two
bounds actually agree is known as the Minimax theorem, one of the most important
results in game theory. It was proven by von Neumann in 1928.

Theorem 6.2 (Minimax Theorem). In a zero-sum game, the security level of player
1 is the negative of the security level of player 2:

max
s1

min
s2

u1(s1, s2) = −max
s2

min
s1

u2(s1, s2) = min
s2

max
s1

u1(s1, s2).

Proof. Since the security level of player 2 is necessarily an upper bound for the security
level of player 1, we have

v1 := max
s1

min
s2

u1(s1, s2) ≤ min
s2

max
s1

u1(s1, s2) =: v2.
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Using the guaranteed existence of a Nash equilibrium s∗, we set v∗1 := u1(s
∗) and show

v∗1 ≤ v1 by the calculation

v1 = max
s1

min
s2

u1(s1, s2)

≥ min
s2

u1(s
∗
1, s2)

= −max
s2

−u1(s∗1, s2)

= −max
s2

u2(s
∗
1, s2)

= −u2(s∗) = u1(s
∗) = v∗1.

Analogously, we see v∗1 ≥ v2, so v1 = v∗1 = v2.

In particular, every zero-sum game is determined, in the sense that there is a unique
“individually rational” outcome. This of course does not mean that the strategy to get
to that outcome is unique, for example in the zero game (all payoffs are zero).

Definition 6.3. The value of a zero-sum game is the security level of player 1.

The minimax theorem also implies that Nash equilibria and maximin strategies agree
for zero-sum games. In particular, all combinations of Nash equilibria in zero-sum games
are again Nash equilibria, which yield the same payoff. Lec 10

2021-06-22
Definition 6.4. A generalized saddle point is a set consisting of nonempty sets of
actions ∅ ̸= Bi ⊂ Ai for each player i ∈ N , such that for all players i ∈ N and ai ̸∈ Bi,
there exists bi ∈ Bi that strictly dominates ai in the subgame G|B1×···×Ai×···×Bn .

This can be thought of as a set-valued variation of quasi-strict Nash equilibria. Intu-
itively, a player will be dissuaded from playing an action that is not in their assigned set
of actions, assuming that all other players stick to their set of assigned actions.

Of course, the set of all actions for each player constitutes a generalized saddle point.
It is thus natural to ask for generalized saddle points that are as small as possible.

Definition 6.5. The set of generalized saddle points is partially ordered by inclusion.
A saddle is a minimal element of this partially ordered set.

Since this is a partial order on a finite set, any game has a saddle. The following
theorem shows that they are unique in zero-sum games.

Theorem 6.6. Every zero-sum game contains a unique saddle.

The theorem follows from the following two lemmata.

Lemma 6.7. In a zero-sum game, any two generalized saddle points (B1, B2), (C1, C2)
must satisfy B1 ∩ C1 ̸= ∅ and B2 ∩ C2 ̸= ∅.

Lemma 6.8. In a zero-sum game, if (B1, B2), (C1, C2) are two generalized saddle points,
then their intersection (B1 ∩ C1, B2 ∩ C2) is also a generalized saddle point.

There is a straightforward (greedy) algorithm to determine the smallest generalized
saddle point that contains a given set of actions for each player.
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Algorithm 6.9. Let G be a zero-sum game and B1 ⊂ A1, B2 ⊂ A2 subsets of the action
profiles of the players. The smallest generalized saddle point that contains (B1, B2) can
be obtained as follows:

(a) Find all rows X1 that are not already in B1 and are purely undominated in the
subgame G|A1×B2 .

(b) Find all columnns to X2 that are not already in B2 and are purely undominated in
the subgame G|B1×A2 .

(c) Set B1 := B1 ∪X1, B2 := B2 ∪X2 and iterate until both X1 and X2 are empty.

(d) The resulting (B1, B2) is the desired set.

By iterating this algorithm for each cell of the game and then returning the smallest
one found, we get a polynomial-time algorithm that determines the unique saddle of a
zero-sum game.
To make the algorithm more efficient, we want to determine a point that is always con-
tained in the saddle.

Our first simple observation towards this goal is the following.

Lemma 6.10. In a zero-sum game G, if a1 ∈ A1 is contained in the saddle, then any
action a2 ∈ A2 that minimizes u1(a1, a2) is also contained in the saddle.

Definition 6.11. A maximin point of a zero-sum game G is an action profile (a1, a2) ∈
A1 × A2, such that

(a1, a2) ∈ arg(a1,a2)∈A1×A2

(
max
a1

min
a2

u1(a1, a2)

)
.

In words, a maximin point is just a maximum among all row minima.

Even though the definition of a maximin point is similar to that of maximin strategy,
it does not necessarily constitute a maximin strategy for either of the players. The reason
is that it does not consider mixed responses of the opponent.
For example, consider the zero-sum game

0 2
3 1

It has a unique maximin point, but the only maximin strategy (Nash equilibrium) is
randomizing uniformly for both players.

Our interest in maximin points is justified by the following theorem.

Theorem 6.12. Every maximin point is contained in the saddle.

Thus we get an efficient algorithm that computes the saddle of a zero-sum game in
linear time.

Algorithm 6.13. The saddle point of a zero-sum game can be determined by invoking
Algorithm 6.9 with (B1, B2) set to a maximin point of the game.

In fact, all saddles of any normal-form game can be found in polynomial time.
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7 Succinct Games and Commitments

So far we have only looked at games in normal-form games. One inconvenient feature
of normal-form games is that their required space usage is exponential in the number of
players. In contrast, succinct games are precisely those games which can be represented
in such a way that the required space is polynomial in the number of players.

Definition 7.1. A class of games is called succinct, if its utility functions can be rep-
resented in such a way that their space is polynomial in the number of players.

Succinct games usually have some form of “symmetry” on the set of players, which is
exploited in order to achieve the reduced space usage.

7.1 Anonymous Games

One example for such a class of games are anonymous games, which are those games in
which all players have the same set of actions and the payoff of a player only depends on
their own action played and the number of times the actions were played by the other
players. It does not depend on who of the other players played which action.

Definition 7.2. A game with action sets A1, . . . , An is called anonymous, if A1 = · · · =
An and for any i ∈ N and permutation π : N → N with π(i) = i, we have

ui(a) = ui(aπ(1), aπ(2), . . . , aπ(n)).

In other words, since the group of permutations fixing a player i ∈ N acts on A in the
obvious way and acts trivially on R, the above amounts to demanding that for all i ∈ N ,
the payoff function ui : A→ R is an equivariant map.

By definition, every two-player game with the same set of actions for both players is
anonymous.
An anonymous game with n players and k actions for each player can be specified as
follows: For each player, a partial function

ũi : {1, . . . , k} ×
k∏

i=1

{1, . . . , n− 1} → R,

where ũi(a, v) describes the payoff of player i if they play a and the action j is played
vj times by the other players. Therefore, the space required is bounded from above by
k · (n−1)k, which is a polynomial in n and thus anonymous games are succinct whenever
k is constant (i.e. independent of n).

If additionally the payoff functions for all players are the same, then the game is called
symmetric.

7.2 Symmetric Games

Definition 7.3. A game with action sets A1, . . . , An is called symmetric, if A1 = · · · =
An and for any i ∈ N and permutation σ : N → N , we have

ui(a) = uπ(i)(aπ(1), aπ(2), . . . , aπ(n)).
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In particular, every symmetric game is anonymous. Additionally, a symmetric game
must necessarily assign the same utility to all players that play the same action. A two-
player game is symmetric if and only if the sets of actions of the two players agree and
u1(a1, a2) = u2(a2, a1) for all a1, a2 ∈ A1 = A2; i.e. if the payoff matrix of the second
player is the transpose of that of the first player.
Therefore, a zero-sum game is symmetric if and only if both players have the same actions
and the payoff matrix is antisymmetric. In particular, the diagonal must consist of only
zeros.

Lec 11
2021-06-29We already discussed that finding a Nash equilibrium in normal-form games is PPAD-

complete (even for two players). The same holds for anonymous games by the following
argument: Any two-player normal-form game can be made into an anonymous two-player
game by renaming and adding actions. The added actions should give worst possible util-
ity to both players, so any Nash equilibrium must correspond to actions from the original
game. Therefore, if we could efficiently find a Nash equilibrium for anonymous games,
then the same would be true for two-player normal-form games.
Using Gale’s symmetrization procedure, it is not hard to see that finding a Nash equilib-
rium in symmetric games is PPAD-complete.

Nash showed in 1951:

Theorem 7.4. Every symmetric game contains a symmetric Nash equilibrium; i.e. an
equilibrium in which all players play the same strategy.

Theorem 7.5. In a symmetric zero-sum game, the security level of both players is 0.

7.3 Graphical Games

Another class of games are graphical games, which are those games for which the payoff
of any player i is only affected by the actions of a set of other players Γ(i).

Definition 7.6. A graphical game is a game for which there exists a function Γ : N →
P(N), such that for all action profiles a, b ∈ A with ai = bi and aj = bj for all j ∈ Γ(i),
we have ui(a) = ui(b). The set Γ(i) is called local neighborhood of i.

Clearly, ever normal-form game can be viewed as a graphical game with maximal
neighborhoods and graphical games are succinct if the size of the neighborhoods is
bounded from above by a constant.

Theorem 7.7. Finding a Nash equilibrium in a graphical game with degree bounded by
3 is PPAD-complete.

7.4 Stackelberg Games

In some settings, players can commit to their performance of an action (e.g. via a binding
contract).

Definition 7.8. A two-player game is called Stackelberg game, if one player (called
leader) commits to a strategy before the other player (called follower) picks their action.
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There exist games for which it is optimal to commit to dominated actions, assuming
the opponent wants to maximize their payoff. Under the same assumption, one can
construct games for which it is beneficial to be the leader and games for which it is better
to be the follower.

Of course, committing to a mixed strategy instead of a pure one can increase the
payoff. If we only allow committing to pure strategies, then we can find an optimal pure
strategy to commit to by iterating through each of our actions, computing a best response
for our opponent and then choosing the action that maximizes our payoff.

The following theorem shows that even if we are allowed to commit to mixed strategies,
we can still efficiently determine an optimal commitment.

Theorem 7.9. An optimal mixed strategy to commit to can be computed in polynomial
time.

Proof (sketch). For every pure strategy s2 of the follower, compute a mixed strategy s1
for the leader that maximizes u1(s1, s2) and such that s2 is a best response to s1. This
can be done efficiently using linear programming.

8 Extensive-Form Games
Lec 12
2021-07-06Extensive-form games are games with sequential moves. They are usually modeled by

graphs. We will only consider extensive-form games in which all moves are observable by
all players; that is, every player has perfect information about the actions taken by the
other players.

Definition 8.1. An extensive-form game (with perfect information) consists of the fol-
lowing data:

(a) A finite set of players N .

(b) A finite set of actions A for all players (the union of the actions of each player).

(c) A finite set of nonterminal nodes H and a finite set of terminal nodes Z.

(d) An action function χ : H → P(A) \ {∅}, specifying which actions are available at
a particular point of the game.

(e) A player function ρ : H → N , specifying whose turn it is at a particular point of
the game.

(f) A successor function σ : H × A → H ∪ Z, which represents the structure of a
directed rooted tree. In particular, every node has at most one ingoing edge.

(g) A utility function u : Z → R|N |, assigning each player their utility.

The strategy set of player i is Si :=
∏

h∈H,ρ(h)=i χ(h).

In this data, the assumptions on σ ensure that no cycles can occur and thus any game
will always terminate. It also allows us to identify every node with its history (the nodes
coming before it in the tree).

Any extensive-form game can be converted into a normal-form game by considering
the strategy sets of each player as their set of actions. The outcome corresponding to a
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choice of an action for each player is just the outcome of the original extensive-form game
if every player plays according to their chosen strategy. This even works for extensive-
form games without perfect information.

The concept of Nash equilibria directly transfers from normal-form to extensive-form
games. We now define a refinement of Nash equilibria, that makes use of the sequential
nature of extensive-form games.

Definition 8.2. A Nash equilibrium s of an extensive-form game G is called subgame-
perfect, if s is a Nash equilibrium in every subtree of G.

Selten showed the following result in 1965.

Theorem 8.3. Every extensive-form game contains a pure subgame-perfect equilibrium.
It is unique if there all outcomes are different and using backward induction it can be
computed in polynomial time.

Proof. Using backward induction, we construct strategies si ∈ Si for each player i ∈ N ,
by starting at the leaves and iteratively going up the tree, choosing (one of) the best
option for the player whose turn it is.
Claim: This yields a subgame-perfect equilibrium.
We show this by induction on the number of nodes in the tree. The base case for the
singleton trees consisting of the terminal nodes is clear. Now consider a subtree T of height
n from the bottom of our original tree. By the inductive hypothesis, the si constitute a
Nash equilibrium in all proper subtrees of T . It is left to prove that the si also represent
a Nash equilibrium for T . By definition, the chosen action of the player whose turn it
is at the root of T is a best response, so no improvement can be made by changing the
action at the root of T . Therefore, if any player j could improve their payoff by deviating
from sj, then this would also apply to a strict subtree of T , which cannot be the case.
Since this constitutes a necessary condition for subgame-perfect equilibria, it is unique
whenever the best responses at each iteration of the algorithm are unique. This is in
particular the case if all outcomes are different.
It is clear that this algorithm can be computed in polynomial time.

For the special case of extensive-form zero-sum games, backward induction is called
minimax algorithm. In that case, the game is described by the payoff of the first player,
who tries to maximize that value, whereas the second player tries to minimize it. The
runtime of the minimax algorithm can be improved using alpha–beta pruning.

We conclude with the following remarkable statement.

Theorem 8.4 (Zermelo’s Theorem). Every extensive-form zero-sum game is strongly
determined ; i.e. there is a unique value (corresponding to rational play) obtainable by
pure strategies.

Proof. By Theorem 8.3, there exists a pure Nash equilibrium and since it is a zero-sum
game, it corresponds to a maximin strategy of both players.

In particular, since the value of such games is obtainable by pure strategies, there are
only finitely many values that the value of the game may take. For example, for the game
of chess, the value of the game thus must be a win for white, a tie or a win for black.
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